|
|
Study of the inhibition effect of alpinetin on human ovarian cancer cell line OVCAR-8 and its mechanism |
ZENG Jing WANG Jing▲ YIN Jinfeng SONG Qi |
Department of Gynecology and Obstetrics, Chengdu Second People′s Hospital, Sichuan Province,Chengdu 610017, China |
|
|
Abstract Objective To explore the effect of alpinetin on human ovarian cancer cell line OVCAR-8 and its mechanism. Methods OVCAR-8 cells were treated with different concentrations of alpinetin (25, 50, 100, 200 and 400 μmol/L, DMSO as control) for different hours (24, 48 and 72 h), then cell viabilities were detected by CCK-8 assays. 3D spheroid assay was used to measure the spheroid formation capacity of OVCAR-8 cell after treated with 50 μmol/L alpinetin (DMSO as control) for 7 days. Besides, wound healing assay was used to measure the migration capacity of OVCAR-8 cell after treated with 100 μmol/L alpinetin (DMSO as control) for 24 h. In addition, Western blot was used to detect the protein levels of STAT3 signaling related and apoptosis related proteins in OVCAR-8 cells after alpinetin treatments (50, 100 and 200 μmol/L, DMSO as control) for 48 h. Results 25-400 μmol/L alpinetin had remarkable inhibiting effects on OVCAR-8 cells and in a dose-and time-dependent manner(all P < 0.05). After 7 days′ treatment, the diameter of spheroid in 50 μmol/L alpinetin group was significantly shorter than DMSO control group (P < 0.05). Besides, the width of wound in 100 μmol/L alpinetin group was significantly longer than DMSO control group after treatment for 24 h (P < 0.05). In addition, the protein levels of Bcl-2, p-STAT3, c-myc and survivin were decreased in 50, 100 and 200 μmol/L group of OVCAR-8 cells than DMSO control group after 48 exposure. On the contrary, the protein level of Bax, cleaved-caspase-3 and -9 was increased (all P < 0.05), and there were no significantly changes in STAT3 levels (P > 0.05). Conclusion Alpinetin can inhibit the proliferation and migration of OVCAR-8 cells,its mechanism may be related to the inhibition of STAT3 signaling pathway and the activation of mitochondrial apoptosis signaling.
|
|
|
|
|
[1] Chien J,Poole E M. Ovarian Cancer Prevention,Screening,and Early Detection [J]. International Journal of Gynecological Cancer,2017,27:S20-S22.
[2] Huo M,Chen N,Chi G,et al. Traditional medicine alpinetin inhibits the inflammatory response in Raw 264.7 cells and mouse models [J]. International Immunopharmacology,2012,12(1):241-248.
[3] Wu L,Yang W,Zhang SN,et al. Alpinetin inhibits lung cancer progression and elevates sensitization drug-resistant lung cancer cells to cis-diammined dichloridoplatium [J]. Drug Des Devel Ther,2015,9(default):6119-6127.
[4] Wang Z,Lu W,Li Y,et al. Alpinetin promotes Bax translocation,induces apoptosis through the mitochondrial pathway and arrests human gastric cancer cells at the G2/M phase [J]. Mol Med Rep,2013,7(3):915-920.
[5] Tang B,Du J,Wang J,et al. Alpinetin suppresses proliferation of human hepatoma cells by the activation of MKK7 and elevates sensitization to cis-diammined dichloridoplatium [J]. Oncology reports,2012,27(4):1090.
[6] Wang J,Yan Z,Liu X,et al. Alpinetin targets glioma stem cells by suppressing Notch pathway [J]. Tumor Biology,2016,37(7):9243-9248.
[7] Du J,Tang B,Wang J,et al. Antiproliferative effect of alpinetin in BxPC-3 pancreatic cancer cells [J]. Int J Mol Med,2012,29(4):607-612.
[8] Estaquier J,Vallette F,Vayssiere JL,et al. The mitochondrial pathways of apoptosis [J]. Adv Exp Med Biol,2012, 942:157-183.
[9] Pokorny J,Jandová A,Nedbalová M,et al. Mitochondrial metabolism - neglected link of cancer transformation and treatment [J]. Prague Med Rep,2012,113(2):81-94.
[10] Rogalska A,Szula E,Gajek A,et al. Activation of apoptotic pathway in normal,cancer ovarian cells by epothilone B[J]. Environ Toxicol Pharmacol,2013,36(2):600-610.
[11] Farsinejad S,Gheisary Z,Ebrahimi Samani S,et al. Mitochondrial targeted peptides for cancer therapy [J]. Tumour Biol,2015,36(8):5715-5725.
[12] Yadav N,Chandra D. Mitochondrial and postmitochondrial survival signaling in cancer [J]. Mitochondrion,2014,16:18-25.
[13] Lopez J,Tait SW. Mitochondrial apoptosis: killing cancer using the enemy within [J]. Br J Cancer,2015,112(6):957-962.
[14] Ashkenazi A. Targeting the extrinsic apoptotic pathway in cancer: lessons learned and future directions[J]. J Clin Invest,2015,125(2):487-489.
[15] Chen SH,Murphy DA,Lassoued W,et al. Activated STAT3 is a mediator and biomarker of VEGF endothelial activation [J]. Cancer Biol Ther,2008,7(12):1994-2003.
[16] Cai L,Zhang G,Tong X,et al. Growth inhibition of human ovarian cancer cells by blocking STAT3 activation with small interfering RNA [J]. European Journal of Obstetrics & Gynecology and Reproductive Biology,2010, 148(1):73-80.
[17] Landen CN,Lin YG,Armaiz Pena GN,et al. Neuroendocrine Modulation of Signal Transducer and Activator of Transcription-3 in Ovarian Cancer [J]. Cancer Research,2007,67(21):10389-10396.
[18] Jia Z,Jia Y,Guo F,et al. Phosphorylation of STAT3 at Tyr705 regulates MMP-9 production in epithelial ovarian cancer [J]. PLoS ONE,2017,12(8):e183622.
[19] Hirano T,Ishihara K,Hibi M. Roles of STAT3 in mediating the cell growth,differentiation and survival signals relayed through the IL-6 family of cytokine receptors [J]. Oncogene,2000,19(21):2548-2556.
[20] Siveen KS,Sikka S,Surana R,et al. Targeting the STAT3 signaling pathway in cancer:role of synthetic and natural inhibitors [J]. Biochim Biophys Acta,2014,1845(2):136-154. |
|
|
|