|
|
Research progress on the mechanism of mitochondrial structural and functional homeostasis imbalance after cerebral ischemia / reperfusion injury#br# |
WU Dan1 QI Zhongwen1 ZHANG Wei1 MA Yan2 |
1.Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
2.Department of Encephalopathy, the Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300151, China |
|
|
Abstract [Abstract] Ischemic stroke is a disease characterized by high mortality, high disability rate and low cure rate. Ischemia/reperfusion injury caused by blood flow recanalization after stroke will cause more serious damage to brain tissue, the destruction of mitochondrial structure and function homeostasis is one of the main pathological links. The changes of mitochondrial structure and function after cerebral ischemia / reperfusion injury have great significance to promote the neuronal protection of ischemic brain injury. In recent years, the research on mitochondrial homeostasis imbalance such as mitochondrial oxidative stress, permeability transition pore, calcium overload and mitochondrial autophagy has become more theoretical and systematic, and the interaction mechanism with cerebral ischemia / reperfusion injury has become more clear. This paper summarizes and discusses the specific mechanism of mitochondrial structural and functional homeostasis imbalance after cerebral ischemia / reperfusion injury, in order to provide new ideas and methods for the clinical application of ischemic stroke.
|
|
|
|
|
[1] Yang Y,Shi YZ,Zhang N,et al. The disability rate of 5-year post-stroke and its correlation factors:a national survey in China [J]. PLoS One,2016,11(11):e0165341.
[2] Wu SM,Wu B,Liu M,et al. Stroke in China:advances and challenges in epidemiology,prevention,and management [J]. Lancet Neurol,2019,18(4):394-405.
[3] 《中国脑卒中防治报告》编写组.《中国脑卒中防治报告2019》概要[J].中国脑血管病杂志,2020,17(5):272-281.
[4] Wang W,Jiang B,Sun H,et al. Prevalence,incidence,and mortality of stroke in China:results from a nationwide population-based survey of 480687 adults [J]. Circulation,2017,135(8):759-771.
[5] Morciano G,Giorgi C,Bonora M,et al. Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury [J]. J Mol Cell Cardiol,2015,78:142-153.
[6] Khoshnam SE,Winlow W,Farzaneh M,et al. Pathogenic mechanisms following ischemic stroke [J]. Neurol Sci,2017,38(7):1167-1186.
[7] Siket MS. Treatment of acute ischemic stroke [J]. Emerg Med Clin North Am,2016,34(4):861-882.
[8] Lo EH,Dalkara T,Moskowitz MA. Mechanisms,challenges and opportunities in stroke [J]. Nat Rev Neurosci,2003,4(5):399-415.
[9] Dawson TM,Dawson VL. Mitochondrial mechanisms of neuronal cell death:potential therapeutics [J]. Annu Rev Pharmacol Toxicol,2017,57(1):437-454.
[10] Zhang J,Tang Q,Zhu L. Could the Gut microbiota serve as a therapeutic target in ischemic stroke? [J]. Evid Based Complement Alternat Med,2021(25):1-15.
[11] Tajeddine N. How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation? [J]. Biochim Biophys Acta,2016,1860(6):1079-1088.
[12] Liang W,Huang X,Chen W. The effects of baicalin and baicalein on cerebral ischemia:a review [J]. Aging Dis,2017,8(6):850-867.
[13] Andrabi SS,Parvez S,Tabassum H. Ischemic stroke and mitochondria:mechanisms and targets [J]. Protoplasma,2020,257(2):335-343.
[14] Ma MW,Wang J,Zhang QG,et al. NADPH oxidase in brain injury and neurodegenerative disorders [J]. Mol Neurodegener,2017,12(1):7.
[15] Jia J,Jin H,Nan D,et al. New insights into targeting mitochondria in ischemic injury [J]. Apoptosis,2021,26(3/4):163-183.
[16] Pérez MJ,Quintanilla RA. Development or disease:duality of the mitochondrial permeability transition pore [J]. Dev Biol,2017,426(1):1-7.
[17] Yuan J,Najafov A,Py BF. Roles of caspases in necrotic cell death [J]. Cell,2016,167(7):1693-1704.
[18] 蔡莹,孔凡丛,丁庆庆,等.线粒体通透性转换孔在神经退行性疾病中的作用研究进展[J].中风与神经疾病杂志,2020,37(2):172-174.
[19] Liao QS,Du Q,Lou J,et al. Roles of Na+/Ca2+ exchanger 1 in digestive system physiology and pathophysiology [J]. World J Gastroenterol,2019,25(3):287-299.
[20] Singh V,Mishra VN,Chaurasia RN,et al. Modes of calcium regulation in ischemic neuron [J]. Indian J Clin Biochem,2019,34(3):246-253.
[21] Ferdinand P,Roffe C. Hypoxia after stroke:a review of experimental and clinical evidence [J]. Exp Transl Stroke Med,2016,8(1):9-16.
[22] Park JH,Hayakawa K. Extracellular mitochondria signals in CNS disorders [J]. Front Cell Dev Biol,2021,9:642853.
[23] Wu X,Zheng Y,Liu M,et al. BNIP3L/NIX degradation leads to mitophagy deficiency in ischemic brains [J]. Autophagy,2021,17(8):1934-1946.
[24] Tan T,Zimmermann M,Reichert AS. Controlling quality and amount of mitochondria by mitophagy:insights into the role of ubiquitination and deubiquitination [J]. Biol Chem,2016,397(7):637-647.
[25] Burman JL,Pickles S,Wang C,et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates [J]. J Cell Biol,2017,216(10):3231-3247.
[26] Koyano F,Okatsu K,Kosako H,et al. Ubiquitin is phosphorylated by PINK1 to activate parkin [J]. Nature,2014, 510(7503):162-166.
[27] Doblado L,Lueck C,Rey C,et al. Mitophagy in human diseases [J]. Int J Mol Sci,2021,22(8):3903.
[28] Lamb CA,Yoshimori T,Tooze SA. The autophagosome:origins unknown,biogenesis complex [J]. Nat Rev Mol Cell Biol,2013,14(12):759-774.
[29] Bingol B,Tea JS,Phu L,et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy [J]. Nature,2014,510(7505):370-375.
[30] Onishi M,Yamano K,Sato M,et al. Molecular mechanisms and physiological functions of mitophagy [J]. EMBO J,2021,40(3):e104705.
[31] Chen G,Cizeau J,Vande VC,et al. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins [J]. J Biol Chem,1999,274(1):7-10.
[32] Rogov VV,Suzuki H,Marinkovi■ M,et al. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins [J]. Sci Rep,2017,7(1):1131.
[33] Kubli DA,Ycaza JE,Gustafsson AB. Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak [J]. Biochem J,2007,405(3):407-415.
[34] Shi RY,Zhu SH,Li V,et al. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke [J]. CNS Neurosci Ther,2014,20(12):1045-1055.
[35] Xian H,Liou YC. Functions of outer mitochondrial membrane proteins:mediating the crosstalk between mitochondrial dynamics and mitophagy [J]. Cell Death Differ,2021,28(3):827-842.
[36] Yan WJ,Dong HL,Xiong LZ. The protective roles of autophagy in ischemic preconditioning [J]. Acta Pharmacol Sin,2013,34(5):636-643.
[37] Wang Y,Nartiss Y,Steipe B,et al. ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy [J]. Autophagy,2012,8(10):1462-1476.
[38] Bravo SR,Parra V,López CC,et al. Calcium transport and signaling in mitochondria [J]. Compr Physiol,2017,7(2):623-634.
[39] 魏思灿,林天来,黄玲,等.槲皮素通过PINK1/parkin通路激活线粒体自噬减轻大鼠脑缺血再灌注损伤[J].中国病理生理杂志,2020,36(12):2251-2257.
[40] Mao C,Hu C,Zhou Y,et al. Electroacupuncture pretreatment against cerebral ischemia/reperfusion injury through mitophagy [J]. Evid Based Complement Alternat Med,2020,2020:1-9.
[41] Wang W,Xu J. Curcumin attenuates cerebral ischemia-reperfusion injury through regulating mitophagy and preserving mitochondrial function [J]. Curr Neurovasc Res,2020,17(2):113-122. |
|
|
|