|
|
Study on the network pharmacology of Scutellariae Radix in the treatment of hypertension |
DONG Mingyue1 HUANG Yan2 ZHOU Lihua2▲ |
1.The Third Clinical Medical College, He’nan University of Chinese Medicine, He’nan Province, Zhengzhou 450000, China; 2
.Traditional Chinese Medicine Clinic, the Third Affiliated Hospital of He’nan University of Chinese Medicine, He’nan Province, Zhengzhou 450000, China |
|
|
Abstract Objective To analyze the potential mechanism of Scutellariae Radix in the treatment of hypertension through network pharmacology. Methods The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) was used to screen the chemical components and targets of Scutellariae Radix; GeneCards, OMIM, TTD, and DrugBank databases were used to screen out the disease targets of hypertension; Cytoscape 3.7.2 software was used to construct the “active component-disease target” network of Scutellariae Radix in the treatment of hypertension. The protein-protein interaction (PPI) network was constructed with the help of String database; finally, the R language was used to perform GO annotation analysis and KEGG pathway analysis on the target. Results A total of 86 targets of interaction between Scutellariae Radix and hypertension were identified, among which, CCND1, CDKN1A, ESR1, and others were the core genes. GO functional enrichment mainly included cell response to chemical stress, oxidative stress and adrenergic receptor activity. Among the KEGG pathways, Kaposi sarcoma associated herpesvirus infection, human cytomegalovirus infection and PI3K-Akt signaling pathway were the most significant. Conclusion Thirty-one active components of Scutellariae Radix act on 86 targets to reduce blood pressure, which reflects the characteristics of Scutellariae Radix in the treatment of hypertension through multi-component, multi-target and multi-channel.
|
|
|
|
|
[1] 葛均波,徐永健.内科学[M].8版.北京:人民卫生出版社,2015:257-268.
[2] 党晓芳,张亚男,齐昕,等.134种治疗高血压病中成药处方规律研究[J].北京中医药,2020,39(1):81-84.
[3] 国家药典委员会.中华人民共和国药典[M].一部.北京:中国医药科技出版社,2015:301-302.
[4] 姚雪,吴国真,赵宏伟,等.黄芩中化学成分及药理作用研究进展[J].辽宁中医杂志,2020,47(7):215-220.
[5] 果秋婷,张小飞.关于黄芩的化学成分与药理作用研究进展[J].科学技术创新,2019(27):45-46.
[6] 黑爱连,孙倾三.黄芩苷对大鼠主动脉条收缩的影响[J].首都医科大学学报,1997,18(2):114.
[7] 瞿晶田,王家龙,王玉明.黄芩素通过促进内皮细胞eNOS蛋白表达与NO释放增强乙酰胆碱对血管的舒张作用[J].辽宁中医杂志,2019,46(11):2396-2398.
[8] 邢心睿,吕狄亚,柴逸峰,等.网络药理学在中药作用机制中的研究进展[J].药学实践杂志,2018,36(2):97-102.
[9] Ru JL,Li P,Wang JN,et al. TCMSP:A database of systems pharmacology for drug discovery from herbal medicines [J]. J Cheminform,2014,6:13.
[10] 汝锦龙.中药系统药理学数据库和分析平台的构建和应用[D].杨凌:西北农林科技大学,2015.
[11] Apweiler R,Bairoch A,Wu CH,et al. UniProt:the Universal Protein knowledgebase [J]. Nucleic Acids Res,2004,32(Database issue):D115-D119.
[12] Lopes CT,Franz M,Kazi F,et al. Cytoscape Web:An interactive web-based network browser [J]. Bioinformatics,2010,26(18):2347-2348.
[13] 王小顺.中医降压药物的多效性临床研究思考[J].中华中医药杂志,2010,25(4):600-604.
[14] 董红敬,姚雪,穆岩,等.基于网络药理学方法的黄芩现代药理活性挖掘及其作用机制分析[J].山东科学,2019, 32(5):54-61.
[15] Chen ZY,Su YL,Lau CW,et al. Endothelium dependent contraction and direct relaxation induced by baicalein in rat mesenteric artery [J]. Eur J Pharmacol,1999,374(1):41.
[16] Tan E,Gurjar MV,Sharma RV,et al. Estrogen receptor-alpha gene transfer into bovine aortic inhibits cell migration [J]. Cardiovasc Res,1999,43(3):788-797.
[17] Mercuro G,Zoncu S,Pilia I,et al. Effects of acute administration of transdermal estrogen on postmenopausal women with systemic hypertension [J]. Am J Cardiol,1997, 80(5):652-655.
[18] Ha JM,Kim YW,Lee DH,et al. Regulation of arterial blood pressure by Akt1-dependent vascular relaxation [J]. J Mol Med,2011,89(12):1253-1260.
[19] 曾武涛,马虹,冷秀玉,等.血管紧张素-(1-7)对血管紧张素Ⅱ诱导心肌细胞原癌基因c-fos表达的影响[J].中国心血管杂志,2003,8(1):9-11.
[20] 卡地尔江·牙生,吴桂霞,卡思木江·阿西木江,等.c-jun、SERCA-2a及cTnI基因与应激性高血压大鼠心脏功能的关系[J].新疆医科大学学报,2019,42(9):1126-1131,1135.
[21] 李永康,陈云昭,邹赛英,等.人类疱疹病毒8型致病机制的研究进展[J].国际病毒学杂志,2011,18(4):128-130.
[22] 熊怡凡,邓峰美.人巨细胞病毒感染与高血压的相关性研究[J].成都医学院学报,2015,10(4):479-482.
[23] 杨艳,蔡军,杨新春.人巨细胞病毒与心血管疾病研究进展[J].中国循证心血管医学杂志,2012,4(5):486-488.
[24] Macrez N,Mironneau C,Carricaburu V,et al. Phosphoinositide 3-kinase isoforms selectively couple receptors to vascular L-type Ca(2+)channels [J]. Cir Res,2001, 89(8):692-699.
[25] Mcdonald TF,Pelzer S,Trautwein W,et al. Regulation and modulation of calcium channels in cardiac,skeletal,and smooth muscle cells [J]. Physiol Rev,1994,74(2):365-507. |
|
|
|