|
|
Discussion on the molecular mechanism of Qingre Kasen Keli in the treatment of renal edema based on network pharmacology and molecular docking |
DUAN Yanfen1 ZHANG Dongning1 HOU Shuaihong2 MO Guoyan1 HAN Lintao1 HUANG Fang3 YIN Qiang1,2 LI Jingjing3 |
1.College of Pharmacy, Hubei University of Chinese Medicine, Hubei Province, Wuhan 430065, China;
2.Xinjiang Uygur Pharmaceutical Industry Company Limited, Xinjiang Uygur Autonomous Region, Urumqi 830026, China;
3.College of Basic Medical Sciences, Hubei University of Chinese Medicine, Hubei Province, Wuhan 430065, China |
|
|
Abstract Objective To investigate the molecular mechanism of Qingre Kasen Keli in the treatment of renal edema based on network pharmacology and molecular docking. Methods The active ingredients of Cichorii Herba in Qingre Kasen Keli were screened through the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and related literatures. The targets of Qingre Kasen Keli were collected and matched with those targets related to renal edema. The “compound-targe-pathway” network was constructed by Cytoscape 3.7.0. R language was used for GO functional enrichment analysis and KEGG pathway enrichment analysis to predict its mechanism of action in the treatment of renal edema, and the effective compounds in Qingre Kasen Keli were molecule docking with the core targets. Results Thirty-five active ingredients were screened from Qingre Kasen Keli, involving 153 gene targets. It was found that they were mainly involved in PI3K-Akt, MAPK1, Ras, and Rap1 signaling pathway etc. in the treatment of renal edema through targets such as EGFR, KDR, MAPK3, IGF1R, AKT1, and GSK3B etc. The results of molecular docking showed that the selected active ingredients had strong binding ability to target. Conclusion The main active components, functional activities, mechanism of action and signal pathway of Qingre Kasen Keli in the treatment of renal edema are inferred by using network pharmacology research method, which provide theoretical support and ideas for further research in the future.
|
|
|
|
|
[1] 依力哈木·买买提,凯赛尔·阿不拉.HPLC测定清热卡森颗粒中秦皮乙素[J].中国实验方剂学杂志,2011,17(11):80-82.
[2] 王雨,林志健,边猛,等.维药菊苣提取物对高尿酸血症状态下肠道屏障的影响[J].中华中医药杂志,2018,33(5):1718-1723.
[3] 邹丽娜,王雨,姜卓希,等.基于肾脏尿酸转运的中药降尿酸活性成分筛选及评价——以菊苣酸为例[J].世界中医药,2021,16(1):28-34.
[4] 张明昊,陈四清,章金涛.绿茶对五苓散利水消肿的促进作用研究[J].中医药导报,2019,25(1):83-85.
[5] 蒋丛丛,邓伟.从《伤寒论》谈肾性水肿[J].中医临床研究,2018,10(17):12-13.
[6] 苏宪英,石光,张欣,等.引起药物性水肿的常见药物及发生机制[J].中国民族民间医药,2016,25(6):163,165.
[7] Yang M,Chen JL,Xu LW,et al. Navigating traditional Chinese medicine network pharmacology and computational tools [J]. Evid Based Complement Alternat Med,2013:731969.
[8] Daina A,Michielin O,Zoete V. SwissADME:a free web tool to evaluate pharmacokinetics,drug-likeness and medicinal chemistry friendliness of small molecules [J]. Sci Rep,2017,7:42717.
[9] 朱冬宁,陈驰,王淑美,等.网络药理学在中医药研究领域的应用进展[J].广东化工,2018,45(7):157-158.
[10] 董一珠,张冰,林志健,等.基于网络药理学的雷公藤效毒作用机制研究[J].中国中药杂志,2019,44(16):3460-3467.
[11] Ru J,Li P,Wang J,et al. TCMSP:a database of systems pharmacology for drug discovery from herbal medicines [J]. J Cheminform,2014,6:13.
[12] 徐慧哲,王雨,毛秋月,等.菊苣化学成分及其防治尿酸相关代谢性疾病研究进展[J].世界中医药,2021,16(1):35-40.
[13] 孟得静,胡宝丰,李秋英,等.菊苣酸酯清胶囊治疗尿酸性肾病合并高脂血症疗效观察[J].内蒙古中医药,2020, 39(9):3-4.
[14] Daina A,Zoete V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules [J]. Chem Med Chem,2016,11(11):1117-1121.
[15] 张洁,谭初兵,徐为人.Lipinski五规则的研究进展[J].药物评价研究,2011,34(6):451-455.
[16] Lipinski C. Chris Lipinski. Interview by Peter Kirkpatrick [J]. Nat Rev Drug Discov,2012,11(12):900-901.
[17] 孙凯滨,张新雨,刘静,等.小柴胡汤治疗早期新型冠状病毒肺炎(COVID-19)邪热郁肺、枢机不利证功效网络分析与机制预测[J].中草药,2020,51(7):1750-1760.
[18] 熊佳惠,侯恩存,唐友明,等.基于分子对接及网络药理学方法研究附子理中汤治疗晚期胃癌的作用机制[J].中医学报,2020,35(1):164-171.
[19] 张泽生,卢亚莉,高云峰,等.菊苣中苦味物质的研究进展[J].中国食品添加剂,2015(5):174-178.
[20] Bischoff TA,Kelley CJ,Karchesy Y,et al. Antimalarial activity of lactucin and lactucopicrin:sesquiterpene lactones isolated from Cichorium intybus L [J]. J Ethnopharmacol,2004,95(2/3):455-457.
[21] Weso?覥owska A,Nikiforuk A,Michalska K,et al. Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice [J]. J Ethnopharmacol,2006,107(2):254-258.
[22] 王雪洁,林志健,张冰,等.菊苣小分子化合物对黄嘌呤氧化酶抑制作用的分子对接研究[J].中国中药杂志,2015, 40(19):3818-3825.
[23] Lu H,Wu L,Liu L,et al. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization [J]. Biochem Pharmacol,2018,154:203-212.
[24] 麻志恒,钟利平,余柯娜,等.抗纤灵水煎剂对慢性肾衰模型小鼠PI3K-AKT-mTOR mRNA表达的影响[J].中国实验方剂学杂志,2016,22(20):96-100.
[25] Li F,Li L,Cheng M,et al. SHIP,a novel factor to ameliorate extracellular matrix accumulation via suppressing PI3K/Akt/CTGF signaling in diabetic kidney disease [J]. Biochem Biophys Res Commun,2017,482(4):1477-1483.
[26] 姚兰,李均.肾纤维化MAPK相关信号通路及中医药干预的研究进展[J].中华中医药杂志,2015,30(7):2431-2433.
[27] Wysocki J,Goodling A,Burgaya M,et al. Urine RAS components in mice and people with type 1 diabetes and chronic kidney disease [J]. Am J Physiol Renal Physiol,2017,313(2):F487-F494.
[28] Zeiller C,Blanchard MP,Pertuit M,et al. Ras and Rap1 govern spatiotemporal dynamic of activated ERK in pituitary living cells [J]. Cell Signal, 2012,24(12):2237-2248.
[29] 张怡萍,王倩,肖雪,等.真武汤治疗肾纤维化的药效物质基础及分子作用机制研究[J].世界科学技术-中医药现代化,2020,22(5):1734-1743. |
|
|
|