|
|
Prediction and analysis of Oenanthe javanica in the treatment of coronavirus disease 2019 based on network pharmacology |
LIU Qingchuan CAO Wenbin YANG Xinbo WANG Renjie WANG Mengmeng HUANG Zhengming |
Department of Pharmacology, Beijing Weijian Jiye Institute of Biotechnology, Beijing 100039, China |
|
|
Abstract Objective To predict and analyze the possibility and the mechanism of Oenanthe javanica in the treatment of coronavirus disease 2019 (COVID-19) by the method of network pharmacology. Methods The potential targets of Oenanthe javanica in therapy of COVID-19 were obtained through literatures, TCMSP and Swiss Target Prediction database. The relative targets of COVID-19 were acquired by the databases, such as GeneCards, TTD, OMIM and Drugbank. The “active components-targets-disease network” was established by Cytoscape. The network graph of protein-protein interaction (PPI) was set up by STRING database and Cytoscape. The gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were performed by DAVID database and R language. Results Sixty active components-disease targets were obtained from seven constituents of Oenanthe javanica. The key targets included TNF, IL-6, TPS3, MARK-1, CASP3, etc. KEGG pathway enrichment analysis revealed several signaling pathways, such as TNF, Toll-like receptor, PI3K-Akt signaling pathway, etc. GO function indicated that biological process mainly involved inflammatory response, apoptosis and immune response. Molecular function mainly involved protein binding, enzyme binding and cytokine activity. Cell compositions involved cytoplasm, plasma membrane, nucleus and mitochondrion. Conclusion Active components of Oenanthe javanica may affect expression of key proteins in virus through TNF, Toll-like receptor signaling pathway, and play an anti-infection, immunomodulatory, antiviral and other roles. This study provides theoretic evidence for further research of Oenanthe javanica in COVID-19 treatment.
|
|
|
|
|
[1] World Health Organization. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020 [EB/OL].[2020-04-16]. https://www.who.int/zh/dg/speeches/detail/who director general’s remarks at the media briefing on 2019n-Cov on 11 february 2020
[2] 国家卫生健康委员会.截至9月11日24时新型冠状病毒肺炎疫情最新情况[EB/OL]. [2020-09-12]. http://www.nhc.gov.cn/xcs/yqtb/202009/079d5534ffb541f3a-af5cd 21b19677a7.shtml
[3] 王选举,黄正明,杨新波,等.水芹总酚酸对2.2.15细胞HBV DNA、cccDNA的抑制作用[J].中国药理学通报,2009, 25(8):1099-1102.
[4] 王选举,黄正明,杨新波,等.水芹总酚酸对鸭乙肝病毒DNA的抑制作用[J].解放军药学学报,2009,25(6):501-505.
[5] 刘青川,王盼丽,杨新波,等.水芹总酚酸体外抗HBV作用及其机制探讨[J].中国医药导报,2019,16(28):12-16.
[6] 王晨吟,刘青川,黄正明.水芹总酚酸对人类免疫缺陷病毒逆转录酶的抑制作用[J].中国医药导报,2013,10(12):4-8.
[7] 李程程,左雅敏,蒋信明,等.水芹中6种成分同时测定及其指纹图谱建立[J].中成药,2016,38(12):2621-2625.
[8] 黄正明,杨新波,曹文斌,等.中药水芹的现代研究与应用[J].解放军药学学报,2001,17(5):266-269.
[9] 王维娜,黄正明,杨新波,等.高效液相色谱法测定水芹中金丝桃苷的含量[J].解放军药学学报,2005,21(3):224-226.
[10] Ye CH,Gao MN,Lin WQ,et al. Theoretical Study of the anti-NCP Molecular Mechanism of Traditional Chinese Medicine Lianhua-Qingwen Formula(LQF)[J]. ChemRxiv,2020. doi:10.26434/chemrxiv.12016236.v1
[11] Hopkins AL. Network pharmacology [J]. Nat Biotechnol,2007,25(10):1110-1111.
[12] 董培良,李慧,韩华.中药网络药理学的应用与思考[J].中国实验方剂学杂志,2020,26(17):204-211.
[13] 王康泓.SARS-CoV-2感染机制分析与COVID-19治疗药物研究进展[J].生命科学研究,2020,24(6):442-451. https://kns.cnki.net/kcms/detail/43.1266.Q.20200618. 1608.012.html
[14] 孟凡翠,汤立达.中药网络药理学研究中存在的问题与发展展望[J].中草药,2020,51(8):2232-2237.
[15] Catanzaro M,Fagiani F,Racchi M,et al. Immune response in COVID-19:addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2 [J]. Signal Transduct Target Ther,2020,5(1):84.
[16] Chen J,Lau YF,Elaine W,et al. Cellular Immune Responses to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)Infection in Senescent BALB/c Mice:CD4 T Cells Are Important in Control of SARS-CoV Infection [J]. J Virol,2010,84(3):1289-1301.
[17] 周梦琪,杨璐平,马浩洁,等.清肺排毒汤干预新冠肺炎细胞因子风暴机制的网络药理学研究[J].海南医学院学报,2020,26(10):721-729.
[18] 黄敬文,安丽凤,韩雪,等.基于网络药理学研究疏风解毒胶囊防治新型冠状病毒肺炎的潜在作用机制[J].海南医学院学报,2020,26(11):814-819. doi:10.13210/j.cnki.jhmu.20200512.003
[19] 丁园园,张荣生,张冬华,等.基于网络药理学和分子对接探讨苦参碱抗新冠病毒机制研究[J].中药药理与临床,2020,36(4):18-23. doi:10.13412/j.cnki.zyyl.20200629. 001
[20] 王宇航,蔡芸,梁蓓蓓,等.COVID-19细胞因子风暴的预警与治疗进展[J].中国新药杂志,2020,29(13):1514-1519.
[21] Wang W,Ye LB,Ye L,et al. Up-regulation of IL-6 and TNF-alpha induced by SARS-coronavirus spike protein in murine macrophages via NF-kappaB pathway [J]. Virus Res,2007,128(1/2):1-8.
[22] Conti P,Ronconi G,Caraffa A,et al. Induction of pro-inflammatory cytokines(IL-1 and IL-6)and lung inflammation by Coronavirus-19(COVI-19 or SARS-CoV-2):anti-inflammatory strategies [J]. J Biol Regul Homeost Agents,2020,34(2):327-331.
[23] Kishore L,Kaur N,Singh R. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy [J]. Inflammopharmacology,2018,26(4):993-1003.
[24] 颜莹莹,朱旭辉,胡南南,等.严重发热伴血小板减少综合征病毒对小鼠巨噬细胞Toll样受体2及炎性因子表达的影响[J].医学研究生学报,2019,32(11):1164-1168.
[25] 华云玮,朱凌宇,林俊儒.4种不同中药单体对诺如病毒感染性肠炎小鼠细胞TNF-α、IL-1β、IL-6水平及PKR/pPKR的影响[J/OL].辽宁中医药大学学报. [2021-01-06]. https://kns.cnki.net/kcms/detail/21.1543.R.20200918. 1140.040.html |
|
|
|