|
|
GC-MS composition analysis and bacteriostatic test of volatile oil and its inclusion compound from Amomum tsaoko |
LIU Na DING Xiong▲ ZHAO Yi SU Liuyan ZHAO Rongyu |
College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Yunnan Province, Kunming 650500, China |
|
|
Abstract Objective To compare the components before and after the inclusion of volatile oil from Amomum tsaoko, and the bacteriostatic test was carried out. Methods Gas chromatography-mass spectrometry (GC-MS) method was used: HP-5MS quartz capillary column (30 m×0.25 mm×0.25 mm); column temperature: the initial temperature was 40℃; the temperature was increased to 80℃ at 3℃/min, and then to 280℃ at 5℃/min; the column flow rate was 1.0 mL/min; inlet temperature was 250℃; sample injection volume was 1.0 mL; the split ratio was 10∶1; the carrier gas was high-purity helium gas. The standard filter paper method was used to conduct bacteriostatic tests on Candida albicans standard strains SC5314, Candida albicans clinical isolates of drug resistant strains 23#, Staphylococcus aureus and Escherichia coli. Results Sixty-eight compounds in the volatile oil from Amomum tsaoko and 64 inclusion compounds were isolated by GC-MS component analysis. There were 60 common compounds, accounting for 99.11% and 99.65% of the total volatile oil compounds and inclusion compounds, respectively. The bacteriostatic experiments showed that the volatile oil and its inclusion compound had good bacteriostatic effects on Candida albicans and drug-resistant bacteria, and were significantly better than Fluconazole. It also had good bacteriostatic effect on Staphylococcus aureus and Escherichia coli. Conclusion After ultrasonic inclusion, more than 99% of the volatile oil from Amomum tsaoko into beta-cyclodextrin, forming a stable inclusion compound. There is no significant difference in bacteriostatic effect of volatile oil from Amomum tsaoko on the four strains before and after inclusion.
|
|
|
|
|
[1] 高嘉骏,王洪图.草果古今药方纵横[J].天津中医药,2007,24(1):15-18.
[2] 段书德,俞龙泉.中国草果的研究进展[J].安徽农业科学,2009,37(28):3443-3445,3458.
[3] 彭建明,马洁,张丽霞.近年来草果的研究概况[J].中成药,2006,28(7):1036-1038.
[4] 张琪,黄燕,杨扬.草果挥发油的研究进展[J].时珍国医国药,2014,25(4):931-933.
[5] 毛轩瑞,邵金华,孔童,等.野黄桂叶挥发油包合物的制备及评价[J].食品与机械,2018,34(12):205-210.
[6] 钟继昌,谢金涛.右旋布洛芬β-环糊精包合物分散片的制备[J].中国医院药学杂志,2015,35(18):1671-1675.
[7] 刘美辉,濮在海.灯盏花素-β-环糊精包合物片剂的制备工艺研究[J].中国药业,2011,20(17):1671-1675.
[8] 付丽娜,赵宁,何树苗,等.茉莉精油羟丙基-β-环糊精包合物的制备与性能研究[J].中国药师,2018,21(11):1906-1912.
[9] 国家药典委员会.中华人民共和国药典[M].四部.北京:中国医药科技出版社,2015.
[10] 吴桂苹,谷风林,朱科学,等.云南怒江草果的微波无溶剂萃取及其挥发性风味物质的GC-TOF-MS分析[J].中国调味品,2020,12(1):172-179.
[11] 马小双,张锐乖,李文艳.草果挥发油β-环糊精包合物的制备与评价[J].绿色科技,2019,24(22):198-202.
[12] 胡智慧,白佳伟,杨文熙,等.新鲜草果中关键香气成分的分析[J].食品科学,2019:12(11):10-14.
[13] 司民真,林映东.不同产地草果精油原位拉曼光谱研究[J].楚雄师范学院学报,2019,12(3):30-33.
[14] 都盼盼,乐智勇,白宗利,等.草果不同炮制品特征图谱比较研究[J].亚太传统医药,2019,24(1):49-53.
[15] 胡彦,张志信,张铁,等.草果不同栽培品种挥发性成分的GC-MS分析[J].文山学院学报,2018,12(6):15-22.
[16] 谷风林,张林辉,房一明,等.云南不同地区草果物理性状、精油含量及组成分析[J].热带作物学报,2018,24(7):1440-1446.
[17] 杨志清,徐绍忠,张薇,等.云南草果茎叶挥发油含量及主要化学成分分析[J].中药材,2019,24(2):339-343.
[18] Wang H,Bai Z,Jiao T,et al. Palladium-Catalyzed Amide-Directed Enantioselective Hydrocarbofunctionalization of Unactivated Alkenes Using a Chiral Monodentate Oxazoline Ligand [J]. J Am Chem Soc,2018,140(10):3542-3546.
[19] 邱模炎,熊莉莉,王怡菲,等.草果古今应用考略及其防治疫病作用[J].天津中医药,2020,26(3):5-6.
[20] 杨海艳,赵天明,张显权,等.黔产草果不同部位精油化学成分分析及体外抗氧化活性评价[J].食品工业科技,2020,14(2):13-15.
[21] 柴玲,林霄,李燕婧,等.拟草果甲醇提取物抗炎镇痛作用研究[J].中医药导报,2018,28(10):88-89.
[22] 杨彩静,顾艳丽,李君,等.扎冲十三挥发油提取包合工艺优化试验[J].现代中药研究与实践,2020,12(2):44-48.
[23] 娄兴维,罗志军,胡鹏刚,等.四种β-环糊精制备鞣花酸包合物的抗氧化性研究[J].中国酿造,2020,24(4):114-120.
[24] 康万利,张敏,张弘文,等.两亲聚合物设计合成及其增效体系研究(Ⅳ)—主客体包合作用[J].日用化学工业,2020,24(4):220-226.
[25] 杨青,陈达菊,杨羚钰,等.云南省草果产业发展现状及对策[J].现代农业科技,2020,12(1):245-247. |
|
|
|