|
|
Research progress of diagnostic molecular probes for ovarian cancer |
MING Lan CHENG Kai CHEN Yu YANG Rui▲ CHEN Daozhen▲ |
Research Institute for Reproductive Health and Genetic Diseases, the Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Jiangsu Province, Wuxi 214002, China |
|
|
Abstract Ovarian cancer is the most fatal gynecological malignancy because it is found at an advanced stage. Therefore, it is imminent to find a new diagnostic method that can accurately diagnose ovarian cancer at an early stage. Molecular probe technology has unique advantages in accurate diagnosis because of its high specificity and strong sensitivity, and has become a hot spot in the field of accurate diagnosis of ovarian cancer. In this paper, the progress of molecular probe technology in the accurate diagnosis of ovarian cancer is briefly reviewed from the perspective of ovarian cancer specific targets and different modalities, and the future application and development are prospected.
|
|
|
|
|
[1] Siegel RL,Miller KD,Jemal A. Cancer statistics,2020 [J]. CA Cancer J Clin,2020,70(1):7-30.
[2] Ko YJ,Kim WJ,Kim K,et al. Advances in the strategies for designing receptor-targeted molecular imaging probes for cancer research [J]. J Control Release,2019,305:1-17.
[3] 矫春鹏,刘媛媛,路文娟,等.检测活性氮/活性氧的分子荧光探针[J].有机化学,2019,39(3):591-616.
[4] 朱展频,朱虹.Aβ类和Tau蛋白类分子探针在阿尔茨海默病中的研究进展[J].中华核医学与分子影像杂志,2018, 38(4):291-294.
[5] 叶旭,李力.miRNA在卵巢癌早期诊断和预后中作用的研究进展[J].中国肿瘤生物治疗杂志,2019,26(6):715-719.
[6] Shaw SK,Schreiber CL,Roland FM,et al. High-expression of integrin alphavbeta3 enables uptake of targeted fluorescent probes into ovarian cancer cells and tumors [J]. Bioorg Med Chem,2018,26(8):2085-2091.
[7] Wang S,Gu K,Guo Z,et al. Self-assembly of a monochromophore-based polymer enables unprecedented ratiometric tracing of hypoxia [J]. Adv Mater,2019,31(3):e1805735.
[8] 韩贵娟,王明华.64Cu标记各类示踪剂的研究进展[J].标记免疫分析与临床,2019,26(10):1792-1796.
[9] 杨正阳,刘颂,艾世超,等.新型PET-CT探针在胃癌应用中的现状与进展[J].中华普外科手术学杂志:电子版,2019,13(2):109-114.
[10] 田佳乐,贾红梅.99mTc-放射性药物的现状和展望[J].同位素,2018,31(3):143-156.
[11] Siegel BA,Dehdashti F,Mutch DG,et al. Evaluation of 111In-DTPAfolate as a receptor-targeted diagnostic agent for ovarian cancer:initial clinical results [J]. J Nucl Med,2003,44(5):700-707.
[12] Leamon CP,Parker MA,Vlahov IR,et al. Synthesis and biological evaluation of EC20:a new folate-derived,99mTc-based radiopharmaceutical [J]. Bioconjug Chem,2002,13(6):1200-1210.
[13] Xavier C,Blykers A,Vaneycken I,et al. 18F-nanobody for PET imaging of HER2 overexpressing tumors [J]. Nucl Med Biol,2016,4(4):247-252.
[14] Rahmanian N,Hosseinimehr SJ,Khalaj A,et al. 99mTc-radiolabeled GE11-modified peptide for ovarian tumor targeting [J]. Daru,2017,25(1):13.
[15] Uddin MJ,Wilson AJ,Crews BC,et al. Discovery of furanone-based radiopharmaceuticals for diagnostic targeting of COX-1 in ovarian cancer [J]. ACS omega,2019,4(5):9251-9261.
[16] 张紫欣,梁宇霆,孟颖.卵巢癌的MR分子成像研究进展[J].国际医学放射学杂志,2015,38(4):339-342.
[17] Hu Y,Mignani S,Majoral JP,et al. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy [J]. Chem Soc Rev,2018,47(5):1874-1900.
[18] Wang ZJ,Boddington S,Wendland M,et al. MR imaging of ovarian tumors using folate-receptor-targeted contrast agents [J]. Pediatr Radiol,2008,38(5):529-537.
[19] Shen A,Meng X,Gao X,et al. An adaptable nanoplatform for integrating anatomic and functional magnetic resonance imaging under a 3.0 T magnetic field [J]. Adv Funct Mater,2019,29(2):1803832.
[20] Satpathy M,Wang L,Zielinski R,et al. Active targeting using HER-2-affibody-conjugated nanoparticles enabled sensitive and specific imaging of orthotopic HER-2 positive ovarian tumors [J]. Small,2014,10(3):544-555.
[21] Quan G,Du X,Huo T,et al. Targeted molecular imaging of antigen OC183B2 in ovarian cancers using MR molecular probes [J]. Acad Radiol,2010,17(12):1468-1476.
[22] Meng Y,Zhang Z,Liu K,et al. Aminopeptidase N(CD13)targeted MR and NIRF dual-modal imaging of ovarian tumor xenograft [J]. Mater Sci Eng C Mater Biol Appl,2018,93:968-974.
[23] Tong H,Zheng Y,Zhou L,et al. Enzymatic cleavage and subsequent facile intramolecular transcyclization for in situ fluorescence detection of gamma-glutamyltranspetidase activities [J]. Anal Chem,2016,88(22):10816-10820.
[24] Wang KH,Wang YM,Chiu LH,et al. Optical imaging of ovarian cancer using a matrix metalloproteinase-3-sensitive near-infrared fluorescent probe [J]. PLoS One,2018,13(2):e0192047.
[25] Yao D,Lin Z,Wu J. Near-Infrared fluorogenic probes with polarity-sensitive emission for in vivo imaging of an ovarian cancer biomarker [J]. ACS Appl Mater Interfaces,2016,8(9):5847-5856.
[26] Asanuma D,Sakabe M,Kamiya M,et al. Sensitive beta-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo [J]. Nat Commun,2015,6:6463.
[27] Jiang G,Zeng G,Zhu W,et al. A selective and light-up fluorescent probe for beta-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative [J]. Chem Commun(Camb),2017,53(32):4505-4508.
[28] 纪丽景,燕翼,宾建平.靶向超声微泡靶点和配体的研究进展[J].中国医学影像学杂志,2009,17(4):300-302.
[29] Lutz AM,Bachawal SV,Drescher CW,et al. Ultrasound molecular imaging in a human CD276 expression-modulated murine ovarian cancer model [J]. Clin Cancer Res,2014,20(5):1313-1322.
[30] Liu J,Shang T,Wang F,et al. Low-intensity focused ultrasound(LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging [J]. Int J Nano-medicine,2017,12:911-923. |
|
|
|