|
|
Advanced mechanisms and potential clinical application value of monocrotaline-induced pulmonary artery hypertension animal model |
CHENG Xiaohan1 QI Jing2 BAI Yuhua1 ZHENG Xiaodong2 |
1.College of Pharmacy, Harbin Medical University(Daqing), Heilongjiang Province, Daqing 163319, China;
2.College of Basic Medical Sciences, Harbin Medical University (Daqing), Heilongjiang Province, Daqing 163319, China |
|
|
Abstract Pulmonary artery hypertension (PAH) is a fatal cardiovascular disease characterized by increases in pulmonary artery pressure and pulmonary vascular resistance. The pathological features of PAH induced by monocrotaline (MCT) are similar to those of clinical patients. MCT-induced PAH through multiple factors including inflammatory response, endothelium pathway, and regulation of pulmonary artery smooth muscle cells proliferation, et al. Therefore, this article briefly reviews the advances molecular mechanism of the MCT-induced PAH and the exploration in the novel therapeutic targets by using this animal model in recent years.
|
|
|
|
|
[1] Simonneau G,Montani D,Celermajer DS,et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension [J]. Eur Respir J,2019,53(1):1801913.
[2] Bordenave J,Tu L,Savale L,et al. New insights in the pathogenesis of pulmonary arterial hypertension [J]. Rev Mal Respir,2019,36(4):433-437.
[3] Koudstaal T,Boomars KA,Kool M. Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension: An Immunological Perspective [J]. J Clin Med,2020,9(2):561-582.
[4] 马美玲,刘文东,王芳.肺动脉高压药物的临床应用及市场现状[J].中国新药杂志,2017,26(19):2245-2250.
[5] Bueno-Beti C,Sassi Y,Hajjar RJ,et al. Pulmonary Artery Hypertension Model in Rats by Monocrotaline Administration [J]. Methods Mol Biol,2018,1816:233-241.
[6] Durham GA,Palmer TM. Is there a role for prostanoid-mediated inhibition of IL-6 trans-signalling in the management of pulmonary arterial hypertension?[J]. Biochem Soc Trans,2019,47(4):1143-1156.
[7] Pang Y,Liang MT,Gong Y,et al. HGF Reduces Disease Severity and Inflammation by Attenuating the NF-kappaB Signaling in a Rat Model of Pulmonary Artery Hypertension [J]. Inflammation,2018,41(3):924-931.
[8] Gao L,Liu J,Hao Y,et al. Chronic intermittent hypobaric hypoxia attenuates monocrotaline-induced pulmonary arterial hypertension via modulating inflammation and suppressing NF-κB/p38 pathway [J]. Iran J Basic Med Sci,2018,21(3):244-252.
[9] Chen F,Wang H,Zhao J,et al. Grape seed proanthocyanidin inhibits monocrotaline-induced pulmonary arterial hypertension via attenuating inflammation:in vivo and in vitro studies [J]. J Nutr Biochem,2019,67:72-77.
[10] Chen F,Wang H,Yan J,et al. Grape seed proanthocyanidin reverses pulmonary vascular remodeling in monocrotaline-induced pulmonary arterial hypertension by down-regulating HSP70 [J]. Biomed Pharmacother,2018, 101:123-128.
[11] Shi R,Zhu D,Wei Z,et al. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition [J]. Life Sci,2018,207:442-450.
[12] Avecilla V. Effect of Transcriptional Regulator ID3 on Pulmonary Arterial Hypertension and Hereditary Hemorrhagic Telangiectasia [J]. Int J Vasc Med,2019,2019:2123906.
[13] Dannewitz Prosseda S,Tian X,Kuramoto K,et al. FHIT,a Novel Modifier Gene in Pulmonary Arterial Hypertension [J]. Am J Respir Crit Care Med,2019,199(1):83-98.
[14] Zhang C,Wang P,Mohammed A,et al. Function of Adipose-Derived Mesenchymal Stem Cells in Monocrotaline-Induced Pulmonary Arterial Hypertension through miR-191 via Regulation of BMPR2 [J]. Biomed Res Int,2019,2019:2858750.
[15] Chen YC,Yuan TY,Zhang HF,et al. Salvianolic acid A attenuates vascular remodeling in a pulmonary arterial hypertension rat model [J]. Acta Pharmacol Sin,2016,37(6):772-782.
[16] Cheng G,Wang X,Li Y,et al. Let-7a-transfected mesenchymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling [J]. Stem Cell Res Ther,2017,8(1):34-44.
[17] Abdul-Salam VB,Russomanno G,Chien-Nien C,et al. PDE5/Arf6 Pathway [J]. Circ Res,2019,124(1):52-65.
[18] Yu X,Zhao X,Zhang J,et al. Dacomitinib,a new pan-EGFR inhibitor, is effective in attenuating pulmonary vascular remodeling and pulmonary hypertension [J]. Eur J Pharmacol,2019,850:97-108.
[19] Chang H,Chang CY,Lee HJ,et al. Magnolol ameliorates pneumonectomy and monocrotaline-induced pulmonary arterial hypertension in rats through inhibition of angiotensinⅡand endothelin-1 expression [J]. Phytomedicine,2018,51:205-213.
[20] Hsu WL,Lin YC,Jeng JR,et al. Baicalein Ameliorates Pulmonary Arterial Hypertension Caused by Monocrotaline through Downregulation of ET-1 and ETAR in Pneumonectomized Rats [J]. Am J Chin Med,2018,46(4):769-783.
[21] Zhu Y,Wu Y,Shi W,et al. Inhibition of ubiquitin proteasome function prevents monocrotaline-induced pulmonary arterial remodeling [J]. Life Sci,2017,173(Complete):36-42.
[22] Wang G,Ma N,Meng L,et al. Activation of the phosphatidylinositol 3-kinase/Akt pathway is involved in lipocalin-2-promoted human pulmonary artery smooth muscle cell proliferation [J]. Mol Cell Biochem,2015, 410(1/2):207-213.
[23] Lee MY,Tsai KB,Hsu JH,et al. Liraglutide prevents and reverses monocrotaline-induced pulmonary arterial hypertension by suppressing ET-1 and enhancing eNOS/sGC/PKG pathways [J]. Sci Rep,2016,6:31788.
[24] Li LS,Luo YM,Liu J,et al. Icariin Inhibits Pulmonary Hypertension Induced by Monocrotaline through Enhancement of NO/cGMP Signaling Pathway in Rats [J]. Evid Based Complement Alternat Med,2016,2016:7915415.
[25] Yu WC,Chen HY,Yang HL,et al. rBMSC/Cav-1(F92A) Mediates Oxidative Stress in PAH Rat by Regulating SelW/14-3-3eta and CA1/Kininogen Signal Transduction [J]. Stem Cells Int,2019,2019:6768571.
[26] Guo ML,Kook YH,Shannon CE,et al. Notch3/VEGF-A axis is involved in TAT-mediated proliferation of pulmonary artery smooth muscle cells: Implications for HIV-associated PAH [J]. Cell Death Discov,2019,5:22-34.
[27] Chen X,Zhou W,Hu Q,et al. Exploration of the Notch3-HES5 signal pathway in monocrotaline-induced pulmonary hypertension using rat model [J]. Congenit Heart Dis,2019,14(3):396-402.
[28] Rashid J,Alobaida A,Al-Hilal TA,et al. Repurposing rosiglitazone, a PPAR-gamma agonist and oral antidiabetic, as an inhaled formulation, for the treatment of PAH [J]. J Control Release,2018,280:113-123.
[29] Liu WH,Xu XH,Luo Q,et al. Inhibition of the RhoA/Rho-associated,coiled-coil-containing protein kinase-1 pathway is involved in the therapeutic effects of simvastatin on pulmonary arterial hypertension [J]. Clin Exp Hypertens,2018,40(3):224-230.
[30] Nikitopoulou I,Manitsopoulos N,Kotanidou A,et al. Orotracheal treprostinil administration attenuates bleomycin-induced lung injury, vascular remodeling,and fibrosis in mice [J]. Pulm Circ,2019,9(4):2045894019881954.
[31] Lee H,Kim KC,Cho MS,et al. Modafinil improves monocrotaline-induced pulmonary hypertension rat model [J]. Pediatr Res,2016,80(1):119-127.
[32] Wu F,Yao W,Yang J,et al. Protective effects of aloperin on monocroline-induced pulmonary hypertension via regulation of Rho A/Rho kinsase pathway in rats [J]. Biomed Pharmacother,2017,95:1161-1168.
[33] Liu J,Hu S,Zhu B,et al. Grape seed procyanidin suppresses inflammation in cigarette smoke-exposed pulmonary arterial hypertension rats by the PPAR-gamma/COX-2 pathway [J]. Nutr Metab Cardiovasc Dis,2020, 30(2):347-354.
[34] Wisutthathum S,Demougeot C,Totoson P,et al. Eulophia macrobulbon extract relaxes rat isolated pulmonary artery and protects against monocrotaline-induced pulmonary arterial hypertension [J]. Phytomedicine,2018,50:157-165.
[35] Budas GR,Boehm M,Kojonazarov B,et al. ASK1 Inhibition Halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension [J]. Am J Respir Crit Care Med,2018,197(3):373-385.
[36] Zheng Z,Yu S,Zhang W,et al. Genistein attenuates monocrotaline-induced pulmonary arterial hypertension in rats by activating PI3K/Akt/eNOS signaling [J]. Histol Histopathol,2016,32(1):11768.
[37] Su H,Xu X,Yan C,et al. LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension [J]. Respir Res,2018,19(1):254.
[38] Cao Y,Yang Y,Wang L,et al. Analyses of long non-coding RNA and mRNA profiles in right ventricle myocardium of acute right heart failure in pulmonary arterial hypertension rats [J]. Biomed Pharmacother,2018, 106:1108-1115.
[39] Zhu G,Zhang W,Liu Y,et al. miR371b5p inhibits endothelial cell apoptosis in monocrotaline induced pulmonary arterial hypertension via PTEN/PI3K/Akt signaling pathways [J]. Mol Med Rep,2018,18(6):5489-5501. |
|
|
|