|
|
Dexmedetomidine pretreatment inhibits the cerebral ischemia/reperfusion-induced neuroinflammation via AMPK/SIRT1 pathway in rats |
DONG Haiping ZHOU Wei WANG Zhenhong HE Zhenzhou▲ |
Department of Anesthesiology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China |
|
|
Abstract Objective To investigate the mechanism of Dexmedetomidine (Dex) pretreatment on inflammation after cerebral ischemia/reperfusion (I/R) injury in rats. Methods Seventy-two SD rats were randomly divided into 6 groups (n=12). In sham group, after anesthesia by 3% Pentobarbital sodium (50 mg/kg), the rates were isolated the right internal carotid artery, but they were not made into the middle cerebral artery occlusion (MCAO) model. In IR group, after the molding, the rat brain was received reperfusion at 90 min after ischemia. In Dex10 and Dex50 groups, after the molding, they were intraperitoneal injected Dex (10 μg/kg or 50 μg/kg) at 30 min before ischemia. In Dex50+Yoh group, after the molding, they were intraperitoneal injected Yoh (0.5 mg/kg) before 50 μg/kg of Dex. In Yoh group, after the molding, they were intraperitoneal injected Yoh (0.5 mg/kg) before ischemia. The neurofunctional damage assessment, infarct area assessment, the levels of TNF-α and IL-1β, TUNEL staining, SIRT1 protein detection and Neuro-motor function score (TMS) in each group were detected respectively. Results In the IR group, neurofunctional scores, infarction area, TUNEL (+) cell count, levels of TNF-a and IL-1 β and SIRT1 protein expression were significantly higher than those in the sham group, while the TMS scores at 1, 2 and 5 days after reperfusion were lower than those in the sham group, with highly statistically significant difference (P < 0.01). The neurofunctional scores, infarction area, TUNEL (+) cell count, and TNF-a and IL-1 β levels in the Dex10 group and Dex50 group were significantly lower than those in the IR, Dex50+YOH and YOH group, while the TMS score and SIRT1 protein expression were higher than those in the IR, Dex50+YOH and YOH group, with highly statistically significant difference (P < 0.01). The nerve function scores, infarction area, TUNEL (+) cell count, and TNF-a and IL-1 β levels in the Dex50 group were significantly lower than those in the Dex10 group, TMS score and SIRT1 protein expression were significantly higher than those in the Dex10 group (P < 0.01). There was no statistically significant difference between the test indexes of Dex50+YOH group and YOH group (P > 0.05). Conclusion Dexmedetomidine preconditioning can activate α2 adrenergic receptor through AMPK/SIRT1 pathway to inhibit cerebral ischemia reperfusion injury in rats, and reduce the inflammation.
|
|
|
|
|
[1] 丁洁,朱涛.围术期脑卒中危险因素的研究进展[J].医学综述,2014,20(2):268-270.
[2] 朱慧琛,何征宇,王祥瑞.右美托咪啶的神经保护作用及其临床应用[J].上海医学,2012,35(8):722-725.
[3] Kuhmonen J,Haapalinna A,Sivenius J. Effects of Dexmedetomidine after transient and permanent occlusion of the middle cerebral artery in the rat [J]. J Neural Transm(Vienna),2001,108(3):261-271.
[4] Ding XD,Zheng NN,Cao YY,et al. Dexmedetomidine preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest [J]. Int J Neurosci,2016, 126(3):249-256.
[5] Rajakumaraswamy N,Ma D,Hossain M,et al. Neuroprotective interaction produced by xenon and Dexmedetomidine on in vitro and in vivo neuronal injury models [J]. Neurosci Lett,2006,409(2):128-133.
[6] Chi OZ,Grayson J,Barsoum S,et al. Effects of Dexmedetomidine on microregional O2 balance during reperfusion after focal cerebral ischemia [J]. J Stroke Cerebrovasc Dis,2015,24(1):163-170.
[7] Wang Z,Kou D,Li Z,et al. Effects of propofol-Dexmedetomidine combination on ischemia reperfusion-induced cerebral injury [J]. Neuro Rehabilitation,2014,35(4):825-834.
[8] Rodríguez-González R,Sobrino T,Veiga S,et al. Neuroprotective effects of Dexmedetomidine conditioning strategies:evidences from an in vitro model of cerebral ischemia [J]. Life Sci,2016,144:162-169.
[9] Trendelenburg G. Molecular regulation of cell fate in cerebral ischemia:role of the inflammasome and connected pathways [J]. J Cereb Blood Flow Metab,2014,34(12):1857-1867.
[10] 王云杰,侯卓然,廖红,等.能量代谢信号通路对缺血性脑卒中神经保护作用的研究进展[J].药学进展,2014, 38(9):665-671.
[11] Yang Y,Zhang XJ,Li LT,et al. Apelin-13 protects against apoptosis by activating AMP-activated protein kinase pathway in ischemia stroke [J]. Peptides,2016,75:96-100.
[12] Ashabi G,Khalaj L,Khodagholi F,et al. Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia [J]. Metab Brain Dis,2015,30(3):747-754.
[13] Ashabi G,Khodagholi F,Khalaj L,et al. Activation of AMP-activated protein kinase by metformin protects against global cerebral ischemia in male rats:interference of AMPK/PGC-1α pathway [J]. Metab Brain Dis,2014, 29(1):47-58.
[14] Venna VR,Li J,Hammond MD,et al. Chronic metformin treatment improves post-stroke angiogenesis and recovery after experimental stroke [J]. Eur J Neurosci,2014,39(12):2129-2138.
[15] Mulchandani N,Yang WL,Khan MM,et al. Stimulation of brain AMP-activated protein kinase attenuates inflammation and acute lung injury in sepsis [J]. Mol Med,2015, 21:637-644.
[16] Belayev L,Alonso OF,Busto R,et al. Middle cerebral artery occlusion in the rat by intraluminal suture [J]. Stroke,1996,27(9):1616-1623.
[17] Longa EZ,Weinstein PR,Carlson S,et al. Reversible middle cerebral artery occlusion without craniectomy in rats [J]. Stroke,1989,20(1):84-91.
[18] Sato K,Kimura T,Nishikawa T,et al. Neuroprotective effects of a combination of Dexmedetomidine and hypothermia after incomplete cerebral ischemia in rats [J]. Acta Anaesthesiologica Scandinavica,2010,54(3):377-382.
[19] Laudenbach V,Mantz J,Lagercrantz H,et al. Effects of α2-adrenoceptor agonists on perinatal excitotoxic brain injury comparison of Clonidine and Dexmedetomidine [J]. Anesthesiology,2002,96(1):134-141.
[20] Giacoppo S,Galuppo M,De Nicola GR,et al. Tuscan black kale sprout extract bioactivated with myrosinase:a novel natural product for neuroprotection by inflammatory and oxidative response during cerebral ischemia/reperfusion injury in rat [J]. BMC Complement Altern Med,2015, 15:397.
[21] Pandharipande PP,Sanders RD,Girard TD,et al. Effect of Dexmedetomidine versus lorazepam on outcome in patients with sepsis:an a priori-designed analysis of the MENDS randomized controlled trial [J]. Crit Care,2010, 14(2):R38.
[22] Sezer A,Memi■ D,Usta U,et al. The effect of Dexmedetomidine on liver histopathology in a rat sepsis model:an experimental pilot study [J]. Ulus Travma Acil Cerrahi Derg,2010,16(2):108-112.
[23] Gao S,Wang Y,Zhao J,et al. Effects of Dexmedetomidine pretreatment on heme oxygenase-1 expression and oxidative stress during one-lung ventilation [J]. Int J Clin Exp Pathol,2015,8(3):3144-3149.
[24] Shou-Shi W,Ting-Ting S,Ji-Shun N,et al. Preclinical efficacy of Dexmedetomidine on spinal cord injury provoked oxidative renal damage [J]. Ren Fail,2015,37(7):1190-1197.
[25] Ren X,Ma H,Zuo Z,et al. Dexmedetomidine postconditioning reduces brain injury after brain hypoxia-ischemia in neonatal rats [J]. J Neuroimmune Pharmacol,2016,11(2):238-247.
[26] Falkowska A,Gutowska I,Goschorska M,et al. Energy metabolism of the brain,including the cooperation between astrocytes and neurons,especially in the context of glycogen metabolism [J]. Int J Mol Sci,2015,16(11):25 959-25 981.
[27] Sun Y,Jiang C,Jiang J,et al. Dexmedetomidine protects mice against myocardium ischemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway [J]. Clin Exp Pharmacol Physiol,2017,44(9):946-953.
[28] Cheng YF,Young GH,Lin JT,et al. Activation of AMP-activated protein kinase by adenine alleviates TNF-alpha-induced inflammation in human umbilical vein endothelial Cells [J]. PLoS One,2015,10(11):e0 142 283.
[29] Tian Y,Ma J,Wang W,et al. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver [J]. Mol Cell Biochem,2016,422(1-2):75-84.
[30] Yoshizaki T,Milne JC,Imamura T,et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes [J]. Molecular and cellular biology,2009, 29(5):1363-1374.
[31] Lv H,Wang L,Shen J,et al. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats [J]. Brain Res Bull,2015,115:30-36.
[32] He L,Chang E,Peng J,et al. Activation of the cAMP-PKA pathway antagonizes metformin suppression of hepatic glucose production [J]. J Biol Chem,2016,291(20):10 562-10 570.
[33] Gu XY,Liu BL,Zang KK,et al. Dexmedetomidine inhibits Tetrodotoxin-resistant Na.sub.v 1.8 sodium channel activity through G i/o-dependent pathway in rat dorsal root ganglion neurons [J]. Mol Brain,2015,8(1):15. |
|
|
|