|
|
Correlation between serum hepcidin, growth differentiation factor 15 and serum ferritin in β-thalassemia intermedia patients |
LEI Yu ZENG Qing CHENG Weiming |
Department of Hematology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi Zhuang Autonomous Region, Nanning 530023, China |
|
|
Abstract Objective To analyze the correlation of serum hepcidin, growth differentiation factor 15 (GDF15) and serum ferritin (SF) in β-thalassemia intermedia (β-TI) patients. Methods Using stratified sampling method, a total of 56 patients with β-TI confirmed by enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) from September 2016 to March 2019 in the Department of Hematology, the First Affiliated Hospital of Guangxi University of Chinese Medicine (hereinafter referred to as “our hospital”) were selected as the β-TI group and a total of 68 patients who came to the Physical Examination Department of our hospital from November 2018 to March 2019 were selected as the healthy control group. Serum hepcidin and SF and GDF15 levels were analyzed in the two groups. Results In the healthy control group, hemoglobin (Hb), hepcidin and SF were all lower in females than in males, and the differences were statistically significant (all P < 0.05). There was no significant difference in GDF15 between male and female (P > 0.05). In β-TI group, there were no significant differences in Hb, hepcidin, GDF15 and SF between male and female (P > 0.05). In β-TI group, Hb and hepcidin were lower than those in the healthy control group, while GDF15 and SF were higher than those in the healthy control group, and the differences were statistically significant (all P < 0.05). In β-TI group, hepcidin was negatively correlated with GDF15 (r = -0.25), GDF15 was negatively correlated with Hb (r = -0.24), GDF15 was negatively correlated with SF (r = -0.28), and SF was positively correlated with age (r = 0.36); In the healthy control group, GDF15 was positively correlated with hepcidin (r = 0.26), SF was positively correlated with hepcidin (r = 0.34), GDF15 was positively correlated with SF (r = 0.36), and the correlation was statistically significant (all P < 0.05). Conclusion In β-TI patients, serum hepcidin levels are significantly decreased, while GDF15 and SF are significantly increased. GDF15 may be an important regulatory factor of hepcidin in β-TI patients.
|
|
|
|
|
[1] Weatherall DJ. The definition and epidemiology of non-transfusion-dependent thalassemia [J]. Blood Rev,2012, 26 Suppl 1:S3-S6.
[2] 刘容容.铁过载对地中海贫血患者造血功能的损伤和机制研究[J].广西医科大学学报,2019,36(6):1018-1021.
[3] Sagar CS,Kumar R,Sharma DC,et al. DNA damage:beta zero versus beta plus thalassemia [J]. Ann Hum Biol,2015, 42(6):585-588. doi:10.3109/03014460.2014.990921.
[4] Huang Y,Liu R,Wei X,et al. Erythropoiesis and Iron Homeostasis in Non-Transfusion-Dependent Thalassemia Patients with Extramedullary Hematopoiesis [J]. Biomed Res Int,2019,2019:4504302. doi:10.1155/2019/4504302.
[5] Stockwell BR,Friedmann Angeli JP,Bayir H,et al. Ferroptosis:A Regulated Cell Death Nexus Linking Metabolism,Redox Biology,and Disease [J]. Cell,2017,171(2):273-285. doi:10.1016/j.cell.2017.09.021.
[6] De Franceschi L,Bertoldi M,Matte A,et al. Oxidative stress and β-thalassemic erythroid cells behind the molecular defect [J]. Oxid Med Cell Longev,2013,2013:985210.doi:10.1155/2013/985210.
[7] Park CH,Valore EV,Waring AJ,et al. Hepcidin,a urinary antimicrobial peptide synthesized in the liver [J]. J Biol Chem,2001,276(11):7806-7810. doi:10.1074/jbc.M008922200.
[8] Theurl I,Theurl M,Seifert M,et al. Autocrine formation of hepcidin induces iron retention in human monocytes [J]. Blood,2008,111(4):2392-2399. doi:10.1182/blood-2007-05-090019.
[9] Brookes MJ,Sharma NK,Tselepis C,et al. Serum pro-hepcidin:measuring active hepcidin or a non-functional precursor? [J]. Gut,2005,54(1):169-170. doi:10.1136/gut.2004.047639.
[10] Viatte L,Vaulont S. Hepcidin,the iron watcher [J]. Biochimie,2009,91(10):1223-1228. doi:10.1016/j.biochi.2009. 06.012.
[11] 王璐,张倩,韩冰.无效造血与铁过载[J].基础医学与临床,2014,34(1):121-124.
[12] Ashby DR,Gale DP,Busbridge M,et al. Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin [J]. Haematologica,2010,95(3):505-508. doi:10.3324/haematol.2009.013136.
[13] 邹汉良,陈丕绩,黄玉佳,等.珠蛋白生成障碍性贫血基因携带者红细胞生成与铁调素的相关性研究[J].国际检验医学杂志,2012,33(9):1037-1039.
[14] Anderson ER,Taylor M,Xue X,et al. Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia [J]. Proc Natl Acad Sci U S A,2013, 110(50):E4922-E4930. doi:10.1073/pnas.1314197110.
[15] Li H,Choesang T,Bao W,et al. Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice [J]. Blood,2017,129(11):1514-1526. doi:10.1182/blood-2016-09-742387.
[16] Chutvanichkul B,Vattanaviboon P,Mas-Oodi S,et al. Labile iron pool as a parameter to monitor iron overload and oxidative stress status in β-thalassemic erythrocytes [J]. Cytometry B Clin Cytom,2018,94(4):631-636. doi:10. 1002/cyto.b.21633.
[17] Guimar?觔es JS,Cominal JG,Silva-Pinto AC,et al. Altered erythropoiesis and iron metabolism in carriers of thalassemia [J]. Eur J Haematol,2015,94(6):511-518. doi:10.1111/ejh.12464.
[18] Tanno T,Bhanu NV,Oneal PA,et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin [J]. Nat Med,2007,13(9):1096-1101. doi:10.1038/nm1629.
[19] Origa R,Cazzola M,Mereu E,et al. Differences in the erythropoiesis-hepcidin-iron store axis between hemoglobin H disease and β-thalassemia intermedia [J]. Haematologica,2015,100(5):e169-e171. doi:10.3324/haematol.2014.115733.
[20] Dussiot M,Maciel TT,Fricot A,et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia [J]. Nat Med,2014,20(4):398-407. doi:10.1038/nm.3468. |
|
|
|