|
|
Study on the optimization of the ethanol precipitation process of Penyanling Granules by using Box-Behnken response surface methodology |
CAI Pei1,2 ZHENG Yi1 WANG Zheming2 WEN Xiaoke1,2 |
1.Department of Pharmaceutical Research, Hu′nan Provincial Maternal and Child Health Care Hospital, Hu′nan Province, Changsha 410008, China;
2.Hu′nan Engineering Research Center for Optimization of Drug Formulation and Early Clinical Evaluation, Hu′nan Province, Changsha 410008, China |
|
|
Abstract Objective To optimize the ethanol precipitation process for Penyanling Granules. Methods Based on the single factor test, the relative density of the liquid before ethanol precipitation, the final ethanol concentration and the ethanol precipitation time were used as factors. The transfer rates of chlorogenic acid, paeoniflorin, ferulic acid, salvianolic acid B, norisoboldine, liquiritin, tetrahydropalmatine, astilbin and the composite score of solid removal rate were selected as evaluation indexes. The ethanol precipitation process of Penyanling Granules was optimized by Box-Behnken response surface method. Chromatographic conditions: the column was Agilent TC-C18 (250 mm×4.6 mm, 5 μm), the flow rate was 1.0 mL/min. The mobile phase A was acetonitrile and the mobile phase B was 0.2% phosphoric acid solution with gradient elution (0-10 min, 2% A; 10-40 min, 2%-12% A; 40-80 min, 12%-18% A; 80-110 min, 18%-25% A; 110-120 min, 25%-50% A). The column temperature was 30℃ and the detection wavelength was 200-400 nm. Results The optimal ethanol precipitation process was as followed: the relative density of the extract was 1.13, and ethanol was added to allow the content of ethanol to reach 60%, and then been placed for 21 h. The test results indicated that the relative difference of comprehensive scoring value between predicated value and measured value was 0.7%. Conclusion The optimal ethanol precipitation process is simple, easy to operate and the results are accurate and stable, which can provide a reliable theoretical basis for the preparation production of Penyanling Granules.
|
|
|
|
|
[1] 欧阳波,潘涛,王秀梅,等.盆炎灵颗粒的提取工艺研究[J].中国医药指南,2013,11(10):3-6.
[2] 施晓虹,杨日昭,赵立杰,等.醇沉处理前后中药水提液理化性质的变化及其与喷雾干燥黏壁的关系[J].中国中药杂志,2020,45(3):328-335.
[3] 陈路,吴无畏,唐炳兰,等.板山岗颗粒药材提取工艺优化研究[J].中国药业,2020,29(1):20-22.
[4] 朱智德,罗宇东,肖明,等.十味鹅黄颗粒的醇沉及干燥工艺研究[J].中国当代医药,2018,25(25):11-15.
[5] 晏晨,丁丽馨,张卫青,等.枳茵益子安母颗粒醇沉工艺的优化[J].中成药,2018,40(7):1630-1632.
[6] 王永香,米慧娟,张传力,等.Box-Behnken响应面法优化热毒宁注射液金银花和青蒿(金青)的醇沉工艺研究[J].中草药,2015,46(5):671-678.
[7] 邵晶,孙政华,郭玫,等.Box-Behnken设计-响应面法优化参芪复方总多糖醇沉工艺[J].中国医药工业杂志,2016, 47(8):1012-1015.
[8] 肖兰英,刘洋,吴东,等.多指标综合评分法优选黄芪通便颗粒水提醇沉工艺[J].江西中医药,2019,50(435):57-61.
[9] 王连红,张建梅,都玲玲,等.Box-Behnken设计优化蔓荆子总黄酮DES提取工艺研究[J].山东林业科技,2019, 49(6):13-15.
[10] 国家药典委员会.中华人民共和国药典[S].一部.北京:中国医药科技出版社,2015.
[11] 蔡霈,肖作奇,潘涛,等.HPLC法检测不同干燥方式与温度对盆炎灵颗粒主要有效成分的影响[J].中医药导报,2018,24(22):57-61.
[12] 肖作奇,潘涛,欧阳波,等.盆炎灵颗粒HPLC指纹图谱研究[J].中国新药杂志,2015,24(16):1897-1901.
[13] 林传权,莫全毅,刘佳,等.胃乃安新制剂的醇沉工艺优化[J].中国新药与临床药理,2013,24(5):514-518.
[14] 袁佳,李页瑞,陈勇,等.多指标正交设计优选丹参水提液醇沉工艺[J].中国医药工业杂志,2010,40(11):826-829.
[15] 王文平,倪健,冷新,等.多指标正交试验优化芪蛭益肺颗粒水提醇沉工艺[J].中国中医药信息杂志,2018,25(9):71-75.
[16] 潘艳琳,韩莹,李劭,等.藿砂颗粒剂的澄清工艺研究[J].海峡药学,2019,31(12):6-9.
[17] 何艳春,莫秋瑜,黄瑞松,等.正交试验优化十味参归灌肠液的水提醇沉工艺研究[J].广西医科大学学报,2019, 36(11):1843-1846.
[18] 万丹娜,饶倩如,俞梦莹,等.Box-Behnken设计-响应面法优化山楂的醇沉工艺[J].中国药房,2018,29(15):2078-2081.
[19] 李永祝,文远大,余俊,等.Box-Behnken设计-效应面法优选清咽爽喉颗粒醇沉工艺研究[J].湖南中医杂志,2017,33(6):165-167.
[20] 马馨桐,肖凤琴,邱明阳,等.多指标综合评分法优选复方降脂缓释片的水提醇沉工艺及活性研究[J].中国医院药学杂志,2019,39(17):1759-1765.
[21] Box-Behnken响应面法结合多指标综合加权法优选升麻中酚酸类成分的提取工艺[J].中国药房,2016,27(13):1835-1838. |
|
|
|