|
|
Study on the effect of cell autophagy on diabetes mellitus and its chronic complications |
HE Shanshan LI Yanbo |
Department of the First Endocrinology, the First Affiliated Hospital of Harbin Medical University,Heilongjiang Province, Harbin 150001, China |
|
|
Abstract Many factors are involved in the pathogenesis of diabetes mellitus. Diabetes mellitus and its chronic complications can cause damage to multiple organs and systems of the whole body. Autophagy is a highly conservative catabolism process in eukaryotes. Its regulatory mechanism is very complex and involves the coordination of many pathways at different stages. It has been found that autophagy is closely related to the occurrence and development of diabetes mellitus and its chronic complications. In this paper, the latest research progress on the regulatory role of cell autophagy in diabetes and its chronic complications are reviewed.
|
|
|
|
|
[1] Zhao YG,Zhang H. Core autophagy genes and human diseases [J]. Curr Opin Cell Biol,2019,61:117-125.
[2] Mizushima N,Komatsu M. Autophagy:renovation of cells and tissues [J]. Cell,2011,147(4):728-741.
[3] Yang JS,Lu CC,Kuo SC,et al. Autophagy and its link to type Ⅱ diabete mellitus [J]. Biomedicine(Taipei),2017,7(2):8.
[4] Rosa MD,Distefano G,Gagliano C,et al. Autophagy in Diabetic Retinopathy [J]. Curr Neuropharmacol,2016,14(8):810-825.
[5] Lee YH,Kim J,Park K,et al. β-Cell autophagy: mechanism and role in β-Cell dysfunction [J]. Mol Metab,2019,27S(Suppl):S92-S103.
[6] Benito-Cuesta I,Ordó?觡ez-Gutiérrez L,Wandosell F. AMPK activation does not enhance autophagy in neurons in contrast to MTORC1 inhibition:different impact on β-amyloidclearance [J]. Autophagy,2020:1-6. doi:10.1080/15548627.2020.1728095.
[7] 陈灏珠,钟南山,陆再英,等.内科学[M].9版.北京:人民卫生出版社,2018:725.
[8] NCD Risk Factor Collaboration(NCD-RisC). Worldwide trends in diabetes since 1980:a pooled analysis of 751 population-based studies with 4.4 million participants [J]. Lancet,2016,387(10027):1513-1530.
[9] Guo J,Liu Z,Gong R. Long noncoding RNA:an emerging player in diabetes and diabetic kidney disease [J]. Clin Sci(Lond),2019,133(12):1321-1339.
[10] Yang Y,Chen Q,Zhao Q,et al. Inhibition of COX2/PGD2-Related Autophagy Is Involved in the Mechanism of Brain Injury in T2DM Rat [J]. Front Cell Neurosci,2019,13:68. doi:10.3389/fncel.2019.00068.
[11] Weir GC,Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes [J]. Diabetes,2004,53 Suppl 3:S16-S21.
[12] Ishibashi T,Iwama Y,Nakashima H,et al. Nicotinic acetylcholine receptor signaling regulates inositol-requiring enzyme 1α activation to protect β-cells against terminal unfolded protein response under irremediable endoplasmic reticulum stress [J]. J Diabetes Investig,2020. doi:10.1111/jdi.13211.
[13] Quan W,Hur KY,Lim Y,et al. Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice [J]. Diabetologia,2012,55(2):392-403.
[14] Riahi Y,Wikstrom JD,Bachar-Wikstrom E. Autophagy is a major regulator of beta cell insulinhomeostasis [J]. Diabetologia,2016,59(7):1480-1491.
[15] Jung HS,Chung KW,Won Kim J,et al. Loss of autophagy diminishes pancreatic b-cell mass and function with resultant hyperglycemia [J]. Cell Metab,2008,8(4):318-324.
[16] Miao X,Gu Z,Liu Y,et al. The glucagon-like peptide-1 analogue liraglutide promotes autophagy through the modulation of 5′-?譧MP-activated protein kinase in INS-1β-cells under high glucose conditions [J]. Peptides,2018,100:127-139.
[17] Tesch GH. Diabetic nephropathy-is this an immune disorder? [J]. Clin Sci(Lond),2017,131(16):2183-2199.
[18] Dai H,Liu Q,Liu B. Research Progress on Mechanism of Podocyte Depletion in Diabetic Nephropathy [J]. J Diabetes Res,2017:2615286.
[19] Tagawa A,Yasuda M,Kume S,et al. Impaired Podocyte Autophagy Exacerbates Proteinuria in Diabetic Nephr-opathy [J]. Diabetes,2016,65(3):755-767.
[20] Lenoir O,Jasiek M,Hénique C,et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis [J]. Autophagy,2015, 11(7):1130-1145.
[21] Liu WJ,Huang WF,Ye L,et al. The activity and role of autophagy in the pathogenesis of diabetic nephropathy [J]. Eur Rev Med Pharmacol Sci,2018,22(10):3182-3189.
[22] Wei M,Li Z,Yang Z. Crosstalk between protective autophagy and NF-kappaB signal in high glucose -induced podocytes [J]. Mol Cell Biochem,2014,394(1/2):261-273.
[23] G?觟del M,Hartleben B,Herbach N,et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice [J]. J Clin Invest,2011,121(6):2197-2209.
[24] Hou Y,Lin S,Qiu J,et al. NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy [J]. Biochem Biophys Res Commun,2020,521(3):791-798.
[25] Li X,Li C,Sun G. Histone acetylation and its modifiers in the pathogenesis of diabetic nephropathy [J]. J Diabetes Res,2016:4065382
[26] Feit-Leichman RA,Kinouchi R,Takeda M,et al. Vascular damage in a mouse model of diabetic retinopathy:relation to neuronal and glial changes [J]. Invest Ophthalmol Vis Sci,2005,46(11):4281-4287.
[27] Lopes de Faria JM,Duarte DA,Montemurro C. Defective autophagy in diabetic retinopathy [J]. Invest Ophthalmol Vis Sci,2016,57(10):4356-4366.
[28] Yao J,Tao ZF,Li CP,et al. Regulation of autophagy by high glucose in human retinal pigment epithelium [J]. Cell Physiol Biochem,2014,33(1):107-116.
[29] Fu D,Yu JY,Yang S,et al. Survival or death:a dual role for autophagy in stress induced pericyte loss in diabetic retinopathy [J]. Diabetologia,2016,59(10):2251-2261.
[30] Miranda S,González-Rodríguez ?魣,García-Ramírez M,et al. Beneficial effects of fenofibrate in retinal pigment epithelium by the modulation of stress and survival signaling under diabetic conditions [J]. J Cell Physiol,2012, 227(6):2352-2362.
[31] Zhu Y,Qian X, Li J,et al. Astragalos de -IV protects H9C2(2 -1) cardiomyocytes from high glucose -induced injury via miR -34a -mediated autophagy pathway [J]. Artf Cells Nanomed Biotechnol,2019,47(1):4172-4181.
[32] Li S,Li H,Yang D,et al. Excessive Autophagy Activation and Increased Apoptosis Are Associated with Palmitic Acid -Induced Cardiomyocyte Insulin Resistance [J]. J Diabetes Res,2017:2376893.
[33] Xu X,Hua Y,Nair S,et al. Akt2 knockout preserves cardiac function in high -fat diet -induced obesity by rescuing cardiac autophagosome maturation [J]. J Mol Cell Biol,2013,5(1):61-63.
[34] He C,Zhu H,Li H,et al. Dissociation of Bcl -2 -Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis indiabetes [J]. Diabetes,2013,62(4):1270-1281.
[35] Tong M,Saito T,Zhai P,et al. Mitophagy is essential for maintaining cardiac function during high fat diet -induced diabetic cardiomyopathy [J]. Circ Res,2019,124(9):1360-1371.
[36] Cankurtaran V, Ozates S, Ozler S. Association of pupil responses with severity of erectile dysfunction in diabetes mellitus [J]. Indian J Ophthalmol,2019,67(8):1319-1340.
[37] Rew KT, Heidelbaugh JJ. Erectile dysfunction [J]. Am Fam Physician,2016,94(10):820-827.
[38] Zhang KQ,Tian T,Hu LL,et al. Effect of probucol on autophagy and apoptosis in the penile tissue of streptozotocin-induced diabetic rats [J]. Asian J Androl,2019. doi: 10.4103/aja.aja_89_19. |
|
|
|