|
|
Progress in the establishment of atherosclerosis models in rats |
WANG Shuqi1,2 LI Hui1,2 YANG Xiaoqiang3 BAI Yunqi2 LIN Yiyi2 GAO Zhao2 SUN Kehan1 NIE Bo1,2▲ |
1.School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
2.Key Laboratory of Internal Medicine of Traditional Chinese Medicine of Ministry of Education, Beijing Key Laboratory, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China;
3.Department of Stomatology , Army Equipment Department Clinic, Beijing 100012, China |
|
|
Abstract Atherosclerosis is a common vascular disease that affects the arteries from the intima, and it is the main cause of coronary heart disease, cerebral infarction and peripheral vascular disease. The establishment of an animal model of atherosclerosis is of great significance in understanding the pathogenesis, development, clinical diagnosis and prevention of atherosclerosis. By referring to relevant literatures at home and abroad, this paper summarizes the modeling methods of atherosclerosis in rats, compares the advantages and disadvantages of various modeling methods, and summarizes the current situation and progress of establishing animal models of atherosclerosis. Through the review of related literature at home and abroad, this article induces and summarizes the modeling method of atherosclerosis in rats, and compares the advantages and disadvantages of various modeling methods, an overview of the current situation and progress of establishing animal models of atherosclerosis, and concludes that the simple high-fat feed is difficult to form the atherosclerosis lesions, and high-fat feed combined with vitamin D can cause early pathological changes and the build mode for a long time, but the high fat feedstuff combined with vitamin D at the same time, the mechanical damage to surgery can form and human similar mature lesions of atherosclerosis plaques.
|
|
|
|
|
[1] Xi D,Zhao J,Lai W,et al. Systematic analysis of the molecular mechanism underlying atherosclerosis using a text mining approach [J]. Hum Genomics,2016,10(1):14.
[2] 王迪,王毅.动脉粥样硬化动物模型及其进展[J].心脏杂志,2018,30(4):490-493.
[3] 李晓明,王青竹,石婧,等.小檗碱改善动脉粥样硬化小鼠的血管炎性反应和钙化[J].基础医学与临床,2018,38(2):163-168.
[4] 韩同磊,孙羽东,秦锋,等.动脉粥样硬化动物模型的研究进展[J].血管与腔内血管外科杂志,2017,3(5):962-967.
[5] 张作鹏,冯菁,张兴凯,等.胆固醇代谢标志物与冠状动脉病变程度的相关性[J].临床和实验医学杂志,2019,18(14):1564-1567.
[6] 高瑞芳. 大鼠高脂饮食/颈动脉电击损伤复合因素所致动脉粥样硬化模型的研究[D].长春:长春中医药大学.2018.
[7] Chen X,Cao J,Sun Y,et al. Ethanol extract of Schisandrae chinensis fructus ameliorates the extent of experimentally induced atherosclerosis in rats by increasing antioxidant capacity and improving endothelial dysfunction [J]. Pharm Biol,2018,56(1):612-619.
[8] Lian N,Tong J,Li W,et al. Ginkgetin ameliorates experimental atherosclerosis in rats [J]. Biomed Pharmacother,2018,102:510-516.
[9] 李竺宜.苏木乙酸乙酯提取物对动脉粥样硬化模型大鼠血清IL-18、IL-10的影响[D].哈尔滨:黑龙江中医药大学,2017.
[10] 张彩宾,王俊峰,雷俊杰,等.血清总同型半胱氨酸水平与缺血性卒中患者颈内动脉颅内段钙化的关系[J].实用医学杂志,2019,35(14):2252-2256.
[11] 王云鹏.嗜酸乳杆菌调节NO及其氧化介质在动脉粥样硬化形成中的影响[D].成都:西南医科大学,2019.
[12] Yang XR,Nie WJ,Xing J,et al. Establishment and evaluation of an atherosclerosis rat model [J]. Modern Preventive Medicine,2016,9:30.
[13] Song Q,Zhang YY,Han X,et al. Potential mechanisms underlying the protective effects of salvianic acid A against atherosclerosis in vivo and vitro [J]. Biomed Pharmacother,2019,109:945-956.
[14] 董兆旻,谢先梅,孙颖,等.丹皮酚对高脂血症大鼠肝脏脂质代谢及自噬的影响[J].安徽中医药大学学报,2018, 37(5):50-54.
[15] 何嫣,丰青.维生素D在血管钙化中的研究进展[J].临床与病理杂志,2016,36(6):864-867.
[16] Hu Y,Sun B,Liu K,et al. Icariin Attenuates High-cholesterol Diet Induced Atherosclerosis in Rats by Inhibition of Inflammatory Response and p38 MAPK Signaling Pathway [J]. Inflammation,2016,39(1):228-236.
[17] 周红,吴晓燕,袁艺标,等.三种剂量维生素D3结合高脂饲料建立大鼠动脉粥样硬化模型的比较[J].中国动脉硬化杂志,2012,20(11):995-998.
[18] 李洁.压力合并高脂饮食对动脉粥样硬化的影响及越鞠丸的干预作用[D].广州:广州中医药大学,2017.
[19] 齐永芬.关注血管钙化的基础和临床研究[J].中国动脉硬化杂志,2015,23(5):433-436.
[20] Ross R. Atherosclerosis-an Inflammatory Disease [J]. N Engl J Med,1999,340(2):115-126.
[21] 徐敏,韦舒杰,张彦,等.ApoE缺陷大鼠动脉粥样硬化模型的构建[J].中国动脉硬化杂志,2017,25(1):78-82.
[22] 查晴,曹丽娟,王燕萍,等.oxLDL通过TLR4诱导脂质累积和炎症反应促进动脉粥样硬化的分子机制[J].上海交通大学学报:医学版,2017,37(5):611-615.
[23] 周丽程,刘先发,李强,等.小檗碱联合辛伐他汀对动脉粥样硬化模型大鼠的抗动脉粥样硬化作用及其机制[J].吉林大学学报:医学版,2019,45(4):849-854,986-987.
[24] Yin YL,Zhu ML,Wan J. Traditional Chinese medicine xin-mai-jia recouples endothelial nitric oxide synthase to prevent atherosclerosis in vivo [J]. Sci Rep,2017,7:43508.
[25] 蔡宏文,缪静,周鑫斌,等.痰瘀同治方调控PPARγ/NF-κB通路对大鼠动脉粥样硬化斑块内血管新生的影响[J].中国中西医结合杂志,2017,37(5):579-583.
[26] 杨炯,张耀雷,代凤丹,等.高脂饮食结合球囊损伤快速建立ApoE~(-/-)大鼠动脉粥样硬化模型[J].解放军医学杂志,2016,41(12):982-986.
[27] 尚晓玲,高瑞芳.大鼠高脂饮食、颈动脉电击损伤复合因素所致动脉粥样硬化模型的研究[J].长春中医药大学学报,2018,34(5):851-853,1030.
[28] 王庆林,陈文捷,万佳,等.颈总动脉钳夹术加高脂饮食建立大鼠颈动脉粥样硬化模型[J].实用医学杂志,2010, 26(4):562-564.
[29] 张雅琪.化湿通络法对大鼠动脉粥样硬化模型脂代谢的影响[D].长春:长春中医药大学,2018.
[30] 朱家丽.松萝醇提物抗动脉粥样硬化作用及其机制研究[D].成都:西南交通大学,2018. |
|
|
|