|
|
Effect of ellagic acid on cell viability and expression of MEP and SUB genes in trichophyton rubrum |
LI Zhijian Amina·Abula MA Li MA Fuchang LUO Fuxiang Silafu·Aibai WANG Chao DOU Qin |
Xinjiang Institute of Traditional Uighur Medicine, Xinjiang Uygur Autonomous Region, Urumqi 830049, China |
|
|
Abstract Objective To investigate the effect of ellagic acid on the cell activity and expression of metalloproteinase (MEP) and subtilis proteinase (SUB) genes in trichophyton rubrum. Methods The experiment was divided into 5 groups, including the growth control group, the terbinanol 0.08 μg/mL group, and the ellagic acid 64, 128 g/mL and 256 g/mL dose groups. After 7 days of drug action, CCK-8 was used to determine the cell activity of trichophyton rubrum, and reverse transcription polymerase chain reaction was used to detect the gene expression levels of trichophyton rubrum protease MEP and SUB gene. Results Compared with the growth control group, the tepinecol 0.08 g/mL and the ellagic acid 64, 128 μg/mL and 256 μg/mL dose groups significantly inhibited the cell activity of trichophyton rubrum, and decreased the expression levels of protease MEP and SUB genes in the fungi, with statistically significant differences (P < 0.05 or P < 0.01). Conclusion Ellagic acid has a strong inhibitory effect on trichophyton rubrum, and can exert its antifungal effect by inhibiting the expression of protease MEP and SUB genes in fungi.
|
|
|
|
|
[1] Wang D,Chen Q,Liu B,et al. Ellagic acid inhibits proliferation and induces apoptosis in human glioblastoma cells [J].Acta Cir Bras,2016,31(2):143-149.
[2] Hagiwara Y,Kasukabe T,Kaneko Y,et al. Ellagic acid,a natural polyphenolic compound,induces apoptosis and potentiates retinoic acid-induced differentiation of human leukemia HL-60 cells [J]. Int J Hematol,2010,92(1):136-143.
[3] Selvadurai Muralidharan,Jaya Raja Kumar,Sokkalingam Arumugam Dhanara. Development and validation of an high-performance liquid chromatographic,and a ultraviolet spectrophotometric method for determination of Ambroxol hydrochloride in pharmaceutical preparations [J]. J Adv Pharm Technol Res,2013,4(1):65-68.
[4] Ferrell J,Sellers B,Leon R. Management of Spreading Pricklypear(Opuntia humifusa)with Fluroxypyr and Aminopyralid [J]. Weed Technol,2014,28(4):734-738.
[5] Li ZJ,Guo X,Dawuti G,et al. Antifungal Activity of Ellagic Acid In Vitro and In Vivo [J]. Phytother Res,2015, 29(7):1019-1025.
[6] Kaufman G,Horwitz BA,Duek L,et al. Infection stages of the dermatophyte pathogen Trichophyton: microscopic characterization and proteolytic enzymes [J]. Med Mycol,2007,45(2):149-155.
[7] Giddey K,Favre B,Quadroni M,et al. Closely related dermatophyte species produce different patterns of secreted proteins [J]. FEMS Microbiol Lett,2007,267(1):95-101.
[8] Liang PP,Huang XZ,Yi JL,et al. A Trichophyton Rubrum Infection Model Based on the Reconstructed Human Epidermis-Episkin [J]. Chin Med J(Engl),2016,129(1):54-58.
[9] CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi;Approved Standard (M38-A)[M]. Pennsylvania:CLSI,2002.1.
[10] Rudramurthy SM,Shankarnarayan SA,Dogra S,et al. Mutation in the Squalene Epoxidase Gene of Trichophyton interdigitale and Trichophyton rubrum Associated with Allylamine Resistance [J]. Antimicrob Agents Chemother,2018,62(5):e02522-17.
[11] Zaugg C,Monod M,Weber J,et al. Gene expression profiling in the human pathogenic dermatophyte Trichophyton rubrum during growth on proteins [J]. Eukaryot Cell,2009,8(2):241-250.
[12] Sato N,Tagami H. Severe measles in a young female patient with chronic,generalized Trichophyton rubrum infection showing type2 helper T cell-dominant immunologic reactivity [J]. Am Aead Dermatol,2003,48(5Supp1):43-46.
[13] Jousson O,Léchenne B,Bontems O,et al. Secreted subtilisin gene family in Trichophyton rubrum [J]. Gene,2004,339:79-88.
[14] Okafor JI,Ada N. Keratinolytic activity of five human isolates of the dermatophytes [J]. J Commun Dis,2000,32(4):300-305.
[15] 李治建,赵明月,古力娜·达吾提,等.地锦草有效部位对红色毛癣菌细胞膜合成及MEP、SUB基因表达的影响[J].药学学报,2014,49(2):273-276.
[16] Viani FC,Dos Santos JI,Paula CR,et al. Production of extracellular enzymes by Microsporum canis and their role in its viru-lence [J]. Med Mycol,2001,39(5):463-468.
[17] Jousson O,Léchenne B,Bontems O,et al. Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum [J]. Microbiology,2004,150(Pt 2):301-310.
[18] Zhang X,Wang Y,Chi W,et al. Metalloprotease genes of Trichophyton mentagrophytes are important for pathogenicity [J]. Med Mycol,2014,52(1):36-45. |
|
|
|