|
|
The microscopical indentification and determination of the content of five main components of Tagetes erecta L. |
LYU Shaowa1 JIAN Jiping1 TAN Meiwei2 LIU Ying2 LYU Xinyu2 GUO Yuyan1 LI Guoyu2 |
1.Key Laboratory of Base and Application of Bei Chinese Materia Media, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang Province, Harbin 150040, China;
2.School of Pharmacy, Harbin University of Commerce, Heilongjiang Province, Harbin 150076, China |
|
|
Abstract Objective To provide theoretical basis for quality control and rational and effective development and utilization of Tagetes erecta L. by studying the microscopical characteristics of root, stem and leaf of marigold by means of microscopic identification, and detecting the contents of main components in different parts. Methods The microstructure features of Tagetes erecta L. were observed by microscopic identification. YMC C18 column (4.6 mm × 250 mm, 5 μm) was used as the column, acetonitrile (B) - 0.1% formic acid aqueous solution (A) was used as mobile phase of gradient elution with the detection wavelength of 257 nm and the colomn temperature was room temperature. The flow rate was 1.0 mL/min. The injection volume of the sample was 10 μL. Results 5,7,3′-trihydroxyl-3,6,4′-trimethoxylflavone (1), syringic acid (2), patulitrin (3), 5,3′-dihydroxyl-3,6,4′-trimethoxylflavone-7-O-β-D-glucopyranoside (4), 5-hydroxymethylfurfuryl methyl succinate (5) five kinds of linear regression equations were: Y = 2.7957X-0.1385, Y = 2.7951X-0.1163, Y = 0.1740X-0.0231, Y = 0.9006X-0.1242, Y = 0.1815X-0.0916. The correlation coefficient of the compounds was 0.099 92-0.099 95, the recovery rate of the sample was 96.43%-101.17%, and the RSD was 0.13%-1.75%. These five chemical components were found in the rhizome of Tagetes erecta L., and the contents of the other four compounds in the stem were larger than those in the root except for the compound 5. The content of compound 5 was the highest in the stem of Tagetes erecta L., up to 2.5%. Conclusion In this experiment, the effective microscopic identification of the roots, stems and leaves of marigold and the determination of five important components are carried out for the first time. The method is simple, accurate and reproducible, and provides a theoretical basis for the quality control of Tagetes erecta L..
|
|
|
|
|
[1] 胡中芳.万寿菊杀虫、抑菌活性的研究[J].生物学通报,2017,52(11):52-54.
[2] 陈城.菊花、万寿菊特色品种的鉴定与功能成分的测定分析[D].邯郸:河北工程大学,2017.
[3] 吴场铠.高海拔地区万寿菊栽培技术[J].农技服务,2017, 34(1):104-105.
[4] 郭耀东,牛仙,任嘉瑜.万寿菊资源综合开发利用研究进展[J].商洛学院学报,2019,33(2):18-23.
[5] 李高峰.万寿菊花中叶黄素的提取技术及分析方法研究[D].太原:中国日用化学工业研究院,2009.
[6] 刘乐,展俊岭,高子怡,等.万寿菊中叶黄素提取工艺研究现状[J].绿色科技,2018(20):210-211.
[7] 田治国.万寿菊属植物耐热性与抗旱性的评价及生长生理特性的研究[D].咸阳:西北农林科技大学,2012.
[8] 王连芝.万寿菊的化学成分及药理作用研究进展[J].中国医药导报,2012,9(2):10-11.
[9] 徐芳辉,胡志成,易欣宜,等.5-羟甲基糠醛在中药质量标准中的应用现状[J].中国医药导报,2017,14(15):47-50.
[10] 陈利梅.万寿菊黄色素的提取及性质研究[D].海口:华南热带农业大学,2004.
[11] 杨忠林.万寿菊中叶黄素的提取及抗氧化研究[D].武汉:湖北工业大学,2009.
[12] 马娜.万寿菊花中主要有效成分的盐析萃取[D].石河子:石河子大学,2017.
[13] 李曼.万寿菊中叶黄素和α-三连噻吩的提取及α-三连噻吩抑菌研究[D].大庆:黑龙江八一农垦大学,2014.
[14] 宋炜.万寿菊根提取物对西瓜枯萎病的抑菌活性成分研究[D].晋中:山西农业大学,2005.
[15] 张洁.中国植物源杀虫剂发展历程研究[D].咸阳:西北农林科技大学,2018.
[16] 王新国.几种菊科植物光活化杀虫活性及其有效成分研究:[D].广州:华南农业大学,2001.
[17] 张庆国.大豆包囊线虫病的防治对策[J].农村实用科技信息,2015(3):20.
[18] 臧清策,何菁菁,白进发,等.快速筛查中药注射液中有害物质5-羟甲基糠醛的LC-MS/MS方法及其质量评价研究[J].药学学报,2013,48(11):1705-1709.
[19] Uhlenbroek JH,Bijloo JD,Nematocides.I. Isolation and structure of nematocidal principle occurring in Tagetes roots [J]. Rec Trav Chim,1958,77:1004-1009.
[20] 李晓飞,王云民,徐成龙,等.万寿菊对烟草根结线虫的杀线活性[J].安徽农业科学,2017,45(19):136-137, 142.
[21] 王丽丽,李琳琳,张楠楠,等.黄诺玛苷对高糖诱导HUVEC细胞氧化应激及VEGF和ICAM-1蛋白表达的影响[J].中国医药导报,2018,15(10):8-12.
[22] 南敏伦,王莲萍,张家贺,等.金莲花多苷片中四种黄酮类化合物的含量测定[J].中国医药科学,2018,8(3):47-50.
[23] 曹聪梅,史清文,顾玉诚.生物源杀虫剂的研究进展[J].现代农药,2006,5(2):1-7.
[24] 叶慧娟.苦槛蓝中黄酮类化合物的分离[A].中国化学会、国家自然科学基金委员会.中国化学会第9届天然有机化学学术会议论文集[C].中国化学会、国家自然科学基金委员会:中国化学会,2012:1.
[25] 郭章碧,宋东宝,颜冬冬,等.万寿菊对斜纹夜蛾的生物活性测定[J].江西农业大学学报,2010,32(3):479-484. |
|
|
|