|
|
Application of random forest algorithm in the prediction of poor students in traditional Chinese medicine colleges and universities |
TANG Yan WANG Ping |
Information Center, Beijing University of Chinese Medicine, Beijing 100029, China |
|
|
Abstract It is an important task to identify the poor students in traditional Chinese medicine colleges and universities, and there are uneconomical and unjust problems in the current methods. In order to improve the identification of poor students, this paper based on the random forest classification algorithm to study the identification of poor students. In the same data set, the decision tree algorithm and the random forest algorithm are used to classify the poor students. The correct rate of decision tree algorithm is 74.43%, while the accuracy rate of the random forest algorithm model is 85%, and further comparison of the two algorithms. Experiments show that the classification accuracy of random forest algorithm is high, which is suitable for the identification of poor students. Random forest provides a new way for the identification of poor students.
|
|
|
|
|
[1] 李书翔,赵裕慧,陈晓.数据挖掘在家庭经济困难学生精准识别中的应用研究[J].亚太教育,2016(30):292-293.
[2] 韩玉,施海龙,曲波,等.随机森林方法在医学中的应用[J].中国预防医学杂志,2014,15(1):79-81.
[3] 曹路舟.PF-growth算法在高职院校贫困生认定工作中的应用研究[J].西安文理学院自然科学版,2015,18(1):68-72.
[4] 陈晓,王树宝,李建晶,等.基于加权约束的决策树方法在贫困生认定中的应用研究[J].计算机应用与软件,2014, 32(12):136-139.
[5] 杨知玲.数据挖掘在高校贫困生评价中的应用研究[D].广州:华南理工大学,2015.
[6] 张建明.基于数据挖掘的高校贫困生认定系统设计和分析[D].南京:东南大学,2015.
[7] 马幸飞,李引.基于改进的K-means算法在高校学生消费数据中的应用[J].无锡商业职业技术学院学报,2016, 16(6):82-85.
[8] 马骊.随机森林算法的优化改进研究[D].广州:暨南大学,2016.
[9] 周志华.机器学习[M].北京:清华大学出版社,2016.
[10] 怀听听.随机森林算法的改进及其应用研究[D].杭州:中国计量大学,2016.
[11] 杨晓峰,严建峰,刘晓升,等.深度随机森林在离网预测中的应用[J].计算机科学,2016,43(6):208-213.
[12] 杨飚,尚秀伟.加权随机森林算法研究[J].微型机与应用,2016,35(3):28-30.
[13] 李婉华,陈宏,郭昆,等.基于随机森林算法的用电负荷预测研究[J].计算机工程与应用,2016,52(23):236-243.
[14] 程淼海,楼俏,王琼,等.基于随机森林算法的配网抢修故障量预测方法[J].计算机系统应用,2016,25(9):137-143.
[15] 向涛,李涛,赵雪专,等.基于随机森林的精确目标检测方法[J].计算机应用研究,2016,33(9):2837-2840.
[16] 卢晓勇,陈木生.基于随机森林和欠采样集成的垃圾网页检测[J].计算机应用,2016,36(3):731-734.
[17] 李磊,牟少敏,林中琦.随机森林在棉蚜虫害等级预测中的应用[J].安徽农学通报,2017,23(1):18-20.
[18] 张新佶,张天一,许金芳,等.随机森林倾向性评分方法及其在药品不良反应信号检测中的应用[J].中国卫生统计,2016,33(4):578-581.
[19] 巩亚楠,帕提麦·马秉成,朱登浩,等.随机森林与Logistic回归在预约挂号失约影响因素预测中的应用[J].现代预防医学,2014,41(5):769-772.
[20] 李斐,马千里.基于脑电信号特征提取的睡眠分期方法研究[J].计算机技术与发展,2016,26(12):177-181. |
|
|
|