|
|
Research progress of analysis of volatile organic compounds in biological fluids |
TONG Hongshuang1 WANG Changsong2 |
1.Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150000, China;
2.Department of Critical Care Medicine, Cancer Hospital Affiliated to Harbin Medical University, Heilongjiang Province, Harbin 150040, China |
|
|
Abstract Analysis of volatile organic compounds in exhaled breath, blood, sweat, urine, saliva, pleural effusion, cerebrospinal fluid, stool is a new method that was used for the assessment of health status, disease screening and diagnosis. In recent years, this method has the advantages of non-invasive, rapid, convenient operation, cheap and patients with good tolerance. The analysis of volatile organic compounds has attracted more and more attention of researchers and expanded a new research field. At present, the metabolomics research of lung cancer in exhaled breath, blood and urine show that alkanes, aromatic hydrocarbons, oxy-compound has a certain diagnostic value. There is also a link between identified various types of cancer and some special volatile organic compounds.
|
|
|
|
|
[1] Pauling L,Robinson AB,Teranishi R,et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography [J]. Proc Natl Acad Sci USA,1971,68(10):2374-2376.
[2] Williams H,Pembroke A. Sniffer dogs in the melanoma clinic? [J]. Lancet,1989,333(8640):734.
[3] Kischkel S,Miekisch W,Fuchs P,et al. Breath analysis during one-lung ventilation in cancer patients [J]. Eur Respir J,2012,40(3):706-713.
[4] Ressom HW,Xiao JF,Tuli L,et al. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis [J]. Analytica Chimica Acta,2012,743:90-100.
[5] Li J,Peng Y,Duan Y. Diagnosis of breast cancer based on breath analysis:An emerging method [J]. Crit Rev Oncol Hematol,2013,87(1):28-40.
[6] Peng G,Hakim M,Broza YY,et al. Detection of lung,breast,colorectal,and prostate cancers from exhaled breath using a single array of nanosensors [J]. Br J Cancer,2010,103(4):542-551.
[7] Altomare DF,Di M,Porcelli F,et al. Exhaled volatile organic compounds identify patients with colorectal cancer [J]. Br J Surg,2013,100(1):144-150.
[8] Di Lena M,Porcelli F,Altomare DF. Volatile organic compounds as new biomarkers for colorectal cancer:a review [J]. Colorectal Dis,2016,18(7):654-663.
[9] Arasaradnam RP,McFarlane MJ,Ryan-Fisher C,et al. Detection of colorectal cancer(CRC)by urinary volatile organic compound analysis [J]. PLoS One,2014,9(9):e108750.
[10] Tonzetich J,Carpenter PA. Production of volatile sulphur compounds from cysteine,cystine and methionine by human dental plague [J]. Arch Oral Biol,1971,16(6):599-607.
[11] Imamura T. Influences of amino acids on the phenol and indole production of salivary microorganisms [J]. Shigaku,1982,70(1):21-35.
[12] Claus D,Geypens B,Ghoos Y,et al. Oral malodor,assessed by closed-loop,gas chromatography,and ion-trap technology [J]. High Resol Chromatogr,1997,20(2):94-98.
[13] Sánchez MN,García EH,Pavón JL,et al. Fast analytical methodology based on mass spectrometry for the determination of volatile biomarkers in saliva [J]. Anal Chem,2012,84(1):379-385.
[14] Amann A,Mochalski P,Ruzsanyi V,et al. Assessment of the exhalation kinetics of volatile cancer biomarkers based on their physicochemical properties [J]. J Breath Res,2014,8(1):016003.
[15] Soini,HA,Klouckova I,Wiesler D,et al. Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry [J]. Chem Ecol,2010,36(9):1035-1042.
[16] Al-Kateb H,de Lacy Costello B,Ratcliffe N. An investigation of volatile organic compounds from the saliva of healthy individuals using headspace-trap/GC-MS [J]. J Breath Res,2013,7(3):036004.
[17] Kostelc JG,Preti G,Zelson PR,et al. Volatiles of exogenous origin from the human oral cavity [J]. J Chromatogr,1981,226(2):315-323.
[18] Scotter JM,Allardyce RA,Langford VS,et al. The rapid evaluation of bacterial growth in blood cultures by selected ion flow tube-mass spectrometry(SIFT-MS)and comparison with the BacT/ALERT automated blood culture system [J]. J Microbiol Methods,2006,65(3):628-631.
[19] Allardyce RA,Hill AL,Murdoch DR. The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry [J]. Diagn Microbiol Infect Dis,2006,55(4):255-261.
[20] Deng C,Zhang X,Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004, 808(2):269-277.
[21] Deng C,Li N,Zhang X. Development of headspace solid-phase microextraction with on-fiber derivatization for determination of hexanal and heptanal in human blood [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004,813(1):47-52.
[22] Li N,Deng C,Yin X,et al. Gas chromatography-mass spectrometric analysis of hexanal and heptanal in human blood by headspace single-drop microextraction with droplet derivatization [J]. Analyt Biochem,2005,342(2):318-326.
[23] Houeto P,Hoffman JR,Got P,et al. Acetonitrile as a possible marker of current cigarette smoking [J]. Hum Exp Toxicol,1997,16(11):658-661.
[24] Mochalski P,Krapf K,Ager C,et al. Temporal profiling of human urine VOCs and its potential role under the ruins of collapsed buildings [J]. Toxicol Mech Methods,2012,22(7):502-511.
[25] Mochalski P,Al-Zoairy R,Niederwanger A,et al. Quantitative analysis of volatile organic compounds released and consumed by rat L6 skeletal muscle cells in vitro [J]. J Breath Res,2014,8(4):046003.
[26] Johnson CH,Manna SK,Krausz KW,et al. Global meta-bolomics reveals urinary biomarkers of breast cancer in a mcf-7 xenograft mouse model [J]. Metabolites,2013,3(3):658-672.
[27] Cheng Y,Xie G,Chen T,et al. Distinct urinary metabolic profile of human colorectal cancer [J]. Proteome Res,2012,11(2):1354-1363.
[28] Davis VW,Schiller DE,Eurich D,et al. Urinary metabolomic signature of esophageal cancer and Barrett's esophagus [J]. World J Surg Oncol,2012,10(1):271.
[29] Davis VW,Schiller DE,Eurich D,et al. Pancreatic ductal adenocarcinoma is associated with a distinct urinary metabolomic signature [J]. Ann Surg Oncol,2013,20(3):S415-S423.
[30] Zhang A,Sun H,Yan G,et al. Urinary metabolic profiling identifies a key role for glycocholic acid in human liver cancer by ultra-performance liquid-chromatography coupled with high-definition mass spectrometry [J]. Clin Chim Acta,2013,418:86-90.
[31] Matsumura K,Opiekun M,Oka H,et al. Urinary volatile compounds as biomarkers for lung cancer:a proof of principle study using odor signatures in mouse models of lung cancer [J]. PLoS One,2010,5(1):e8819.
[32] Zhang L,Li L,Kong H,et al. Urinary metabolomics study of renal cell carcinoma based on gas chromatography-mass spectrometry [J]. Nan Fang Yi Ke Da Xue Xue Bao,2015,35(5):763-766.
[33] Liu H,Wang H,Li C,et al. Investigation of volatile organic metabolites in lung cancer pleural effusions by solid-phase microextraction and gas chromatography/mass spectrometry [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2014,945/946:53-59.
[34] Hanai Y,Shimono K,Matsumura K,et al. Urinary volatile compounds as biomarkers for lung cancer [J]. Biosci Biotechnol Biochem,2012,76(4):679-684.
[35] de Lacy Costello B,Amann A,Al-Kateb H,et al. A review of the volatiles from the healthy human body [J]. J Breath Res,2014,8(1):014001.
[36] Filipiak W,Ruzsanyi V,Mochalski P,et al. Dependence of exhaled breath composition on exogenous factors,smoking habits and exposure to air pollutants [J]. J Breath Res,2012,6(3):036008. |
|
|
|