|
|
Construction of prokaryotic expression vector and preparation of mouse bile salt dependent lipase protein |
YANG Yi SONG Huanlei QIAN Linxi |
Xinhua Hospital Affiliated to School of Medicine of Shanghai Jiaotong University Shanghai Institute for Pediatric Research Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China |
|
|
Abstract Objective To construct a prokaryotic expression system for mBSDL in E. coli BL21 (DE3) cells and prepare the active mBSDL protein. Methods mBSDL cDNA was amplifed via PCR and inserted into the prokaryotic expression vector pET-28b. The expression of recombinant protein was induced by IPTG in E. coli BL21 cells. Then it was purified via His Trap FF crude purification system and refolded via dialysis system. The specificity of mBSDL protein was analyzed by Western blot. Results The prokaryotic expression vector pET-28b-mBSDL expressing mBSDL protein was successfully constructed and transformed into E. coli BL21(DE3) cells. The mBSDL protein was present as insoluble inclusion bodies in the bacterial extract. Western blot reveled that the purification of this recombinant protein was successful. Conclusion mBSDL protein in E. coli prokaryotic expression system is established successfully. The study provides some foundation for the further analysis of mBSDL protein.
|
|
|
|
|
[1] McKillop AM,O'Hare MM,Craig JS,et al. Characterization of the C-terminal region of molecular forms of human milk bile salt-stimulated lipase [J]. Acta Paediatr,2004, 93(1):10-16.
[2] Fallon EM,Nehra D,Potemkin AK,et al. A.S.P.E.N. clinical guidelines:nutrition support of neonatal patients at risk for necrotizing enterocolitis [J]. JPEN J Parenter Enteral Nutr,2012,36(5):506-523.
[3] Bernal NP,Stehr W,Zhang Y,et al. Evidence for active Wnt signaling during postresection intestinal adaptation [J]. J Pediatr Surg,2005,40(6):1025-1029.
[4] Naarding MA,Dirac AM,Ludwig IS,et al. Bile salt-stimulated lipase from human milk binds DC-SIGN and inhibits human immunodeficiency virus type 1 transfer to CD4+ T cells [J]. Antimicrob Agents Chemother,2006,50(10):3367-3374.
[5] Ruvoen-Clouet N,Mas E,Marionneau S,et al. Bile-salt-stimulated lipase and mucins from milk of "secretor" mothers inhibit the binding of Norwalk virus capsids to their carbohydrate ligands [J]. Biochem J,2006,393(Pt 3):627-634.
[6] Martinez E,Crenon I,Silvy F,et al. Expression of truncated bile salt-dependent lipase variant in pancreatic pre-neoplastic lesions [J]. Oncotarget,2017,8(1):536-551.
[7] Rebai O,Le Petit-Thevenin J,Bruneau N,et al. In vitro angiogenic effects of pancreatic bile salt-dependent lipase [J]. Arterioscler Thromb Vasc Biol,2005,25(2):359-364.
[8] Auge N,Rebai O,Lepetit-Thevenin J,et al. Pancreatic bile salt-dependent lipase induces smooth muscle cells proliferation [J]. Circulation,2003,108(1):86-91.
[9] Fang N,Zhong N,Yang Y,et al. Data of expression and purification of recombinant Taq DNA polymerase [J]. Data Brief,2016,9:81-84.
[10] 郭雪艳.人核糖体蛋白S13在胃癌中的表达及功能分析[D].西安:第四军医大学,2007.
[11] Clark ED. Protein refolding for industrial processes [J]. Curr Opin Biotechnol,2001,12(2):202-207.
[12] Fahnert B,Lilie H,Neubauer P. Inclusion bodies:formation and utilisation [J]. Adv Biochem Eng Biotechnol,2004, 89:93-142.
[13] 李江峰,万惠芳,王继华,等.人白细胞介素6的原核表达和纯化及包涵体复性[J].细胞与分子免疫学杂志,2016, 32(2):228-231.
[14] Lombardo D. Bile salt-dependent lipase:its pathophysiological implications [J]. Biochim Biophys Acta,2001,1533(1):1-28.
[15] 沙丽君,李晓南.胆盐刺激性脂酶的发育、生物学特征和功能的研究进展[J].中国儿童保健杂志,2014,22(8):829-832.
[16] Mas E,Sadoulet MO,el Battari A,et al. Glycosylation of bile salt-dependent lipase (cholesterol esterase) [J]. Methods Enzymol,1997,284:340-353. |
|
|
|