|
|
Model construction of driving factors and nursing intervention strategies for ventilator-associated pneumonia in elderly patients with chronic obstr- uctive pulmonary disease complicated with respiratory failure undergoing mechanical ventilation |
XU Li ZHANG Meng ZHANG Dongya |
Department of Respiratory and Critical Care Medicine, Huaian First Hospital Affiliated to Nanjing Medical University, Jiangsu Province, Huaian 223300, China |
|
|
Abstract Objective To establish driving factors model of ventilator-associated pneumonia (VAP) in elderly patients with chronic obstructive pulmonary disease (COPD) combined with mechanical ventilation of respiratory failure, and formulate nursing intervention strategies accordingly. Methods A total of 120 elderly patients with COPD combined with mechanical ventilation for respiratory failure admitted to the Department of Respiratory and Critical Care Medicine of Huaian First Hospital Affiliated to Nanjing Medical University from February 2019 to February 2022 were included in the study. According to the occurrence of VAP, the patients were divided into VAP group (26 cases) and non-VAP group (94 cases), and clinical data of the two groups were retrospectively collected. The factors influencing the occurrence of VAP in elderly patients with COPD combined with mechanical ventilation of respiratory failure were analyzed and the driving factors model was established according to logistic regression model, and the predictive value of receiver operator characteristics (ROC) curve was drawn to analyze the occurrence of VAP in patients. Results Age, proportion of consciousness disorder, proportion of mechanical ventilation time >five days, proportion of tracheotomy with mechanical ventilation tube, proportion of acute physiology and chronic health evaluation Ⅱ (APACHEⅡ) score >15 points, proportion of repeated hospitalization due to COPD, proportion of serum albumin level ≤30 g/L, proportion of total vein of nutritional support, and the proportion of supine in VAP group were higher than those in non-VAP group, and the oxygenation index was lower than that in non-VAP group (P<0.05). The results of multi-factor analysis showed that age, disturbance of consciousness, mechanical ventilation time > five days, tracheotomy with mechanical ventilation tube, APACHEⅡ score >15, multiple hospitalizations due to COPD, serum albumin level ≤30 g/L, and total vein of nutritional support were the factors influencing the occurrence of VAP in elderly patients with COPD combined with mechanical ventilation of respiratory failure (P<0.05). According to the results of multi-factor analysis, the driving factors model was established: logit (P) =-14.690- age×0.683+disturbance of consciousness×0.706+mechanical ventilation time > five days×0.648+APACHEⅡ score > 15 points×0.798+serum albumin level < 30 g/L×0.564+nutritional support pathway was total vein×0.733, and the area under ROC curve was 0.892 (P<0.05). Conclusion It is of high value to establish driving factors model to predict the occurrence of VAP in elderly patients with COPD combined with mechanical ventilation of respiratory failure, and it has certain reference value for the corresponding nursing intervention strategies of high-risk patients in clinic.
|
|
|
|
|
[1] 武爱萍,吴玉枝.COPD病人机械通气并发VAP感染病原菌分布及抗菌药物耐药性分析[J].护理研究,2019,33(6):1075-1077. [2] 陈竹芳,王俊,沈小玲,等.急性加重期慢性阻塞性肺疾病患者机械通气对发生呼吸机相关性肺炎的影响因素[J].中华医院感染学杂志,2019,29(16):2426-2430. [3] 陈亚男,李爱民,刘克喜,等.ICU老年患者呼吸机相关性肺炎合并耐药菌感染流行病学特征及影响因素[J].中国老年学杂志,2021,41(8):1642-1645. [4] 刘超,曹彬.国内外医院获得性肺炎和呼吸机相关性肺炎指南解析[J].华西医学,2019,34(1):7-11. [5] 中华医学会,中华医学会杂志社,中华医学会全科医学分会,等.慢性阻塞性肺疾病基层诊疗指南(2018年)[J].中华全科医师杂志,2018,17(11):856-870. [6] 陆再英,钟南山.内科学[M].北京:人民卫生出版社,2008:23-29. [7] 程洋,戴丽,夏国光.两种评分系统对慢性阻塞性肺疾病急性加重期患者病情严重程度及预后评估的研究[J].中国临床医生杂志,2020,48(5):539-542. [8] 吴轶,康敏.COPD并发呼吸衰竭患者呼吸机相关性肺炎的病原学特点分析[J].中华肺部疾病杂志(电子版),2022, 15(1):70-72. [9] 安慰,曹显明,裴俊丽,等.ICU机械通气患者呼吸机相关性肺炎的危险因素分析[J].护理管理杂志,2019,19(12):868-872. [10] 卜春红,滑立伟,付强,等.ICU呼吸机相关性肺炎病原菌分布情况及多重耐药菌感染的危险因素调查研究[J].河北医学,2022,28(7):1166-1172. [11] 袁嫣.叩背联合高频胸壁振荡排痰护理法对减少患者呼吸机相关性肺炎发生与机械通气时间的效果分析[J].海军医学杂志,2019,40(4):354-357. [12] 刘红,刘红娟,刘巧,等.重症俯卧位机械通气患者早期肠内营养策略研究[J].新疆医科大学学报,2019,42(10):1315-1318,1323. [13] 戴志辉,吕中,李成行.老年呼吸机相关性肺炎的危险因素及病原菌分布分析[J].国际流行病学传染病学杂志,2022,49(1):33-37. [14] 裘凯,郑永科,顾南媛,等.呼吸机内部回路消毒在机械通气患者中的应用观察[J].中华危重病急救医学,2019, 31(4):449-452. [15] 姚玺,吴志军,尚文涵,等.我国三级医院呼吸机相关性肺炎发病率现状研究[J].中国卫生质量管理,2019,26(3):18-21. [16] 贾凌,陈娇,杨敬辉,等.不同类型气管导管对呼吸机相关性肺炎的影响[J].中华急诊医学杂志,2019,28(10):1292-1295. [17] 李伟,李莉.重症医学科呼吸机相关性肺炎的影响因素及病原学特点分析[J].实用心脑肺血管病杂志,2019, 27(1):78-82. [18] 刘程琳,袁艳玲,王剑云,等.综合重症监护病房呼吸机相关性肺炎感染现状及影响因素分析[J].华西医学,2019,34(8):907-911. [19] 张志萍,张宝民,秦伟,等.肠内营养支持对慢性阻塞性肺病急性加重期机械通气患者营养和预后的影响[J].临床荟萃,2022,37(6):510-514. [20] 李林,刘琴,何兰萍.老年慢性阻塞性肺疾病急性加重期患者发生呼吸机相关性肺炎的危险因素分析[J].中国医刊,2019,54(6):618-621. [21] 吕培瑾,李书阅,蒋云书,等.慢性阻塞性肺疾病急性加重期318例的呼吸机相关性肺炎预测指标和微生物学特征分析[J].安徽医药,2022,26(4):770-773. [22] 丁志鹏,李军荣,路玉宇,等.2016-2019年某院重症脑卒中呼吸机相关性肺炎真菌感染危险因素及对预后的影响[J].中国消毒学杂志,2020,37(9):686-689,692. [23] 孙燕,陈宝华,王旭,等.呼吸机相关性肺炎患者免疫功能、NE和PCT的检测及相关危险因素分析[J].中国病原生物学杂志,2019,14(4):460-463. [24] 席红利,杨丽娜,李娟.呼吸机相关性肺炎患者病原菌检测的意义及其PCT、CRP、肺功能的变化研究[J].国际检验医学杂志,2018,39(13):1602-1605,1609. [25] 沈萍,翟盼盼,刘畅,等.重症脑卒中患者呼吸机肺炎发生相关因素分析[J].中华医院感染学杂志,2018,28(3):340-343. |
|
|
|