|
|
Systematic review of risk prediction models for enteral feeding intolerance in intensive care unit patients |
LIU Tingting TANG Ling SUN Yan LU Jun LU Daozhen▲ |
Department of Intensive Care Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing 210029, China |
|
|
Abstract Objective To systematically review the research status of risk prediction models for enteral nutrition feeding intolerance in intensive care unit (ICU) patients. Methods PubMed, EMbase, Web of Science, Cochrane Library, CNKI, Wanfang Data, VIP, SinoMed were searched from the establishment of the inception to February 2023. Two researchers independently screened the literatures, extracted the data, and evaluated the quality of the included models using the prediction model risk of bias assessment tool. Results A total of ten literatures were included, including 14 prediction models. The area under the receiver operating characteristic curve of 12 models ranged from 0.60 to 0.94, and nine models had good accuracy. The model bias risk assessment results showed that the study had a high risk of bias and good applicability. Conclusion Future research should focus on the external validation and optimization of existing models, or the development of new models under the guidance of standardization to improve the applicability and feasibility of models in clinical application.
|
|
|
|
|
[1] McClave SA,Gualdoni J,Nagengast A,et al. Gastrointestinal Dysfunction and Feeding Intolerance in Critical Illness:Do We Need an Objective Scoring System?[J]. Curr Gastroenterol Rep,2020,22(1):1. [2] Reintam Blaser A,Deane AM,Preiser JC,et al. Enteral Feeding Intolerance:Updates in Definitions and Pathophysiology [J]. Nutr Clin Pract,2021,36(1):40-49. [3] 武晓勇,李旭照,余鹏飞,等.重症患者喂养不耐受的研究进展[J].国际外科学杂志,2017,44(1):55-60. [4] 孙晓岚,李占肖,于晓雯,等.重症脑卒中病人肠内营养不耐受风险的预警模型构建与评估[J].实用老年医学,2022,36(9):942-947. [5] Reintam BA,Malbrain ML,Starkopf J,et al. Gastrointestinal Function in Intensive Care Patients:Terminology,Definitions and Management. Recommendations of the ESICM Working Group on Abdominal Problems [J]. Intensive Care Med,2012, 38(3):384-394. [6] Uozumi M,Sanui M,Komuro T,et al. Interruption of enteral nutrition in the intensive care unit:a single-center survey [J]. J Intensive Care,2017,5:52. [7] 郑金萍,李君,周瑶.基于文献计量学的ICU患者肠内喂养不耐受国内研究现状分析[J].护理实践与研究,2022, 19(22):3353-3358. [8] 张伟琴,李琦,黄晓琼,等.危重症患者肠内营养喂养不耐受的研究进展[J].护理实践与研究,2021,18(23):3526-3530. [9] 包益萍,张玲,俞臻梁.成人ICU患者肠内营养喂养不耐受风险预测模型的研究进展[J].中华急危重症护理杂志,2023,4(6):562-568. [10] 谢晓冉,徐蓉.糖尿病足发病风险预测模型的系统评价[J].中华护理杂志,2021,56(1):124-131. [11] Moons KGM,Wolff RF,Riley RD,et al. PROBAST:a tool to assess risk of bias and applicability of prediction model studies:explanation and elaboration [J]. Ann Intern Med,2019,170(1):W1-W33. [12] Wolff RF,Moons KGM,Riley RD,et al. PROBAST:a tool to assess the risk of bias and applicability of prediction model studies [J]. Ann Intern Med,2019,170(1):51-58. [13] Lu XM,Jia DS,Wang R,et al. Development of a prediction model for enteral feeding intolerance in intensive care unit patients:A prospective cohort study [J].World J Gastrointest Surg,2022,14(12):1363-1374. [14] Hu K,Deng XL,Han L,et al. Development and validation of a predictive model for feeding intolerance in intensive care unit patients with sepsis [J]. Saudi J Gastroenterol,2022,28(1):32-38. [15] 谢文亮,王淑芳,李旭光,等.ICU患者肠内营养相关性腹泻风险预测模型的构建及验证[J].中华护理杂志,2022,57(19):2324-2332. [16] 谢文亮,张清.ICU患者肠内营养相关性腹泻列线图预测模型构建[J].护理学杂志,2022,37(12):83-87. [17] 刘佳欣.个体化预测重症脑卒中患者肠内营养喂养不耐受风险的可视化列线图预警模型的构建[D].济南:山东中医药大学,2022. [18] 李炜,杨富,王晓平,等.神经重症患者肠内营养喂养不耐受风险预警模型的构建[J].中国神经免疫学和神经病学杂志,2022,29(5):398-403. [19] 苏小平,徐静娟,赵亚东,等.危重患者早期肠内营养喂养不耐受风险预测模型的构建[J].护理学报,2022,29(17):47-51. [20] 高婷.ICU成人脓毒症患者肠内营养喂养不耐受风险预测模型的构建和评价[D].合肥:安徽医科大学,2021. [21] 孙晓岚,李占肖,于晓雯,等.重症脑卒中病人肠内营养不耐受风险的预警模型构建与评估[J].实用老年医学,2022,36(9):942-947. [22] 余洁.ICU非胃肠道手术患者胃潴留的风险评估模型构建[D].南京:南京医科大学,2020. [23] 邢娟,章仲恒,柯路,等.2017年中国ICU患者营养治疗实施状况横断面调查[J].解放军医学杂志,2019,44(5):388-393. [24] 程伟鹤,鲁梅珊,郭海凌,等.危重症患者早期肠内营养喂养不耐受的研究进展[J].中华护理杂志,2017,52(1):98-102. [25] Haider S,Sadiq SN,Moore D,et al. Prognostic prediction models for diabetic retinopathy progression:a systematic review [J]. Eye(Lond),2019,33(5):702-713. |
|
|
|