|
|
Design and implementation of monitoring and early warning system for emerging infectious diseases based on real world data of medical whole cycle |
YUAN Fang1 REN Hailing1 MA Hongru2 ZHAO Meng2 LIAO Cong2 LI Zhouyi2 SONG Fei3 |
1.Department of Information Management, the First People’s Hospital of Yinchuan, Ningxia Hui Autonomous Region, Yinchuan 750001, China; 2.College of Clinical Medicine, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan 750004, China; 3.College of Medical Information and Engineering, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan 750004, China |
|
|
Abstract As a passive monitoring system, most of the infectious disease monitoring systems are based on the medical record information after diagnosis, and lack of early warning of new infectious diseases, a monitoring and early warning system for emerging infectious diseases based on the clinical real world data of the whole medical cycle is built. Based on the intelligent system establish by the hospital before, during, and after diagnosis, collect the clinical real world data of the whole medical cycle; combined with Bayesian network and W&D algorithm, the early warning model of infectious disease is constructed, and the knowledge map of infectious disease is built. Establish silent monitoring early warning and active sniffing early warning based on the intelligent diagnosis model of infectious diseases and confirm with experts; establish a comprehensive analysis and early warning center. The results show that the system can realize the monitoring and early warning of emerging infectious diseases from the two perspectives of silent monitoring and active sniffing, which is of great significance for improving the efficiency and effect of epidemic prevention and control, and making the prevention and control threshold move forward.
|
|
|
|
|
[1] 王海星,杨志清,郭燕青,等.基于大数据的传染病监测预警方法及应用[J].预防医学论坛,2020,26(10):796- 798. [2] 弋玉杰.公共卫生监测在疾病预防控制中的重要作用[J].中闻医药指南,2020,18(7):298-299. [3] Langmuirad. Evolution of the concepl of surveillance in the United States [J]. Proc R Soc Med,1971,64(6):681-684. [4] Langmuirad,H.Uwj. Surveilence of polimiiyditis in the United States in 1955 [J]. Am J Public Health Nations Health,1956, 46 (1):75-88. [5] 肖建萍.实施传染病监测是预防控制传染病的有效途径[J].中国卫生产业,2019,16(7):169-170. [6] 韩连军.探究在传染病的防治工作中运用公共卫生监测的方法和效果[J].临床医药文献电子杂志,2019,6(58):183. [7] 欧阳敏.蹇在金老年衰弱评估研究进展[J].中国实用内科杂志,2017,37(4):317-321. [8] Sandersjl,Boudreaukm,Friedlp,et al. Measurement of organ structure a n d function enhances understanding of the physiological basis of frailty:the Cardiovascular Health Study [J]. Am Geriatr Soc,2011,59(9):1581-1588. [9] 林静静,陈蒙仪,张海娜,等.基于互联网和云计算技术创建“云药房”服务模式[J].医院管理论坛,2023,40(1):57-60. [10] 孙亚迪,王海军,王亚芳,等.基于物联网技术的瘫痪病人智能卫生清洁装置[J].物联网技术,2023,13(4):101- 102,107. [11] 任海玲,周涛,霍兵强.基于集成DE-NRS的肺部肿瘤影像组学计算机辅助诊断模型[J].计算机应用与软件,2020,37(5):156-163,204. [12] 刘东,任海玲.基于差分隐私的大数据安全访问权限认证仿真[J].计算机仿真,2021,38(8):421-424,486. [13] 马晓飞,袁方.银川市处方审核流转中心的建设与探索[J].中国医院管理,2020,40(2):92-93. [14] 赵梦,任海玲,廖聪,等.智能语音识别技术在医疗领域中的应用研究[J].中国现代医生,2022,60(28):108-112. [15] 袁方,马瑞霞,任海玲,等.智能导诊机器人的设计与实现[J].数字技术与应用,2021,39(11):176-180. [16] 杨真真,谢艳秋,靳旭东,等.基于ARIMA时间序列模型的传染病发展趋势预测——以COVID-19为例[J].中国科技信息,2021(Z1):70-72. [17] 李春阳.一类具有空间异质性的蚊媒传染病模型的阈值动力学分析[D].哈尔滨:黑龙江大学,2022. [18] 黄冬情.传染病时空分析和风险模拟模型研究[D].昆明:云南师范大学,2022. [19] 陈崇德.基于症状疾病关联模型的传染病监测系统症状监测模块构建研究[D].北京:北京协和医学院,2022. [20] 杨雨琦,孙琦,王悦欣,等.重庆市新型冠状病毒肺炎(NCP)疫情分析与趋势预测[J].重庆师范大学学报(自然科学版),2020,37(1):135-140. [21] 欧阳丽炜,袁勇,郑心湖,等.基于区块链的传染病监测与预警技术[J].智能科学与技术学报,2020,2(2):135- 143. [22] 黄鹏.基于机器学习的乙类传染病预测模型研究与实现[D].成都:电子科技大学,2019. [23] 郭庆峰,杨扣琴,赵丽婷,等.基于“互联网+”构建新型冠状病毒肺炎疫情防控人员管理平台[J].护理研究,2020,34(5):753-755. [24] 万丽,任常军,赵树青,等.应用ARIMA模型预测石家庄市手足口病发病趋势[J].中国卫生统计,2020,37(1):111-113. [25] 蔡晶,黄淑琼,杨雯雯,等.2010~2018年湖北省猩红热流行病学特征及发病趋势预测[J].中华疾病控制杂志,2020,24(2):134-138,150. [26] 刘建昭,刘天,姚梦雷,等.乘积季节ARIMA模型在乙肝发病率预测中的运用[J].医学动物防制,2018,34(7):640-643. [27] 许颖,范肖肖,王涛,等.2011—2020年北京市昌平区麻疹流行特征分析[J].中国医药科学,2022,12(9):70-74. [28] 梅琳,张弢,胡弘,等.基于医疗机构的突发呼吸道传染病症状监测预警机制研究[J].中国医院管理,2022,42(2):54-56,68. |
|
|
|