|
|
Study on the protective effect and mechanism of Tibetan Medicine Ershiwuwei Feibing Pills on acute lung injury in rats |
LI Yaxuan1 LI Weihong1 REN Qingjia2 YE Fei1 GUO Haolin1 LI Tenghui1 FAN Angran1 DU Qinghong1 |
1.School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
2.Graduate School, Tibet Medical University, Tibet Autonomous Region, Lhasa 850000, China
|
|
|
Abstract Objective To prove the protective effect and mechanism of Tibetan Medicine Ershiwuwei Feibing Pills on acute lung injury (ALI) rats. Methods A total of 84 SPF grade male SD rats (weighing [200±20] g, 6-8 weeks old) were divided by random number table into blank group, model group, Shuanghuanglian group (Shuanghuanglian Oral Solution 6 ml/kg), Dexamethasone group (2 mg/kg), and Ershiwuwei Feibing Pills high, medium, and low dose group (6.0, 3.0, 1.5 mg/kg) with 12 rats in each group. Except for the blank group, others were established by sublingual intravenous injection of lipopolysaccharide(LPS) (5 mg/kg). Administration by gavage 24 and 2 hours before modeling. The blood gases of the rats were measured by sampling blood from the abdominal aorta 24 h after modeling:partial pressure of oxygen (PO2), partial pressure of carbon dioxide (PCO2), and pH value. Hematoxylin-Eeosin staining staining was used to observe lung histopathological changes and to perform lung injury histopathology score. ELISA detection of tumor necrosis factor-α (TNF-α), interleukin-1β(IL-1β), and interleukin-10 (IL-10) content in alveolar lavage fluid (BALF); lung tissue was analyzed by Western blot for Toll like receptor 4(TLR4), myeloid differentiation factor 88(MyD88), nuclear factor kappa-B(NF-κB), and myeloperoxidase (MPO) protein expression levels. Results Compared with the blank group, arterial blood PO2, PCO2, and pH value in the model group decreased (P<0.05 or P<0.01); compared with the model group, PO2 increased in the Ershiwuwei Feibing Pills high, medium dose groups, while PCO2 and pH value increased in the Ershiwuwei Feibing Pills high, medium and low dose groups (P<0.05 or P<0.01); compared with the Ershiwuwei Feibing Pills medium and low dose groups, PO2 in the Ershiwuwei Feibing Pills high dose group increased (P<0.05). Compared with the blank group, the lung tissue of model group showed severe injury and significantly higher pathological scores(P<0.01); compared with the model group, the lung tissue damage was reduced and the pathology score was significantly reduced in the Ershiwuwei Feibing Pills high, medium, and low dose groups (P<0.01). Compared with the blank group, TNF-α, IL-1β, and IL-10 in the BALF of the model group increased (P<0.01 or P<0.05); compared with the model group, IL-1β and TNF-α content in the Ershiwuwei Feibing Pills high and medium dose groups significantly decreased (P<0.01), but IL-10 increased (P<0.05), and IL-1β content in the Ershiwuwei Feibing Pills low dose groups reduced (P<0.05); compared with the Ershiwuwei Feibing Pills medium and low dose groups, IL-1β content in the Ershiwuwei Feibing Pills high dose group decreased, but IL-10 content increased (P<0.05). Compared with the blank group, TLR4, MyD88, NF-κB, and MPO protein expression levels in the lung tissue of the model group significantly increased (P<0.01); compared with the model group, TLR4, MyD88, NF-κB, and MPO protein expression levels in the Ershiwuwei Feibing Pill high, medium, and low dose groups significantly reduced(P<0.01); compared with the Ershiwuwei Feibing Pills low dose group, TLR4, MyD88, and NF-κB protein expression levels in the Ershiwuwei Feibing Pills high dose group reduced (P<0.05 or P<0.01); compared with the Ershiwuwei Feibing Pills medium dose group, MyD88 protein expression level in the Ershiwuwei Feibing Pills high dose group significantly decreased (P<0.01). Conclusion Ershiwuwei Feibing Pills can significantly improve LPS induced ALI in rats and its mechanism may be related to the regulation of TLR4/MyD88/NF-κB signaling pathway is related to reducing inflammation and the high-dose has the best effect.
|
|
|
|
|
[1] 杨留森.盐酸氨溴索联合BiPAP呼吸机治疗ARDS的效果分析[J].甘肃医药,2022,41(4):326-327,337.
[2] Kligerman S. Pathogenesis,Imaging,and Evolution of Acute Lung Injury [J]. Radiol Clin North Am,2022,60(6):925-939.
[3] 刘婷婷,雷华,董红艳,等.葛根芩连汤对脂多糖诱导的急性肺损伤大鼠MAPK/NF-κB信号通路的调节及肺组织保护作用[J].西部医学,2022,34(1):40-44,50.
[4] 黄桑,林涛,蒙凌,等.七叶皂苷钠通过阻断TGF-β介导的信号通路对急性肺损伤大鼠肺纤维化和炎症因子的影响[J].中医药导报,2022,28(6):40-43,73.
[5] 房尚萍,袁冉,孙任珂,等.敲除S1PR3可缓解小鼠的急性肺损伤:基于抑制MAPK信号通路[J].南方医科大学学报,2022,42(12):1815-1821.
[6] Wang YM,Ji R,Chen WW,et al. Paclitaxel alleviated sepsis-induced acute lung injury by activating MUC1 and suppressing TLR-4/NF-κB pathway [J]. Drug Des Devel Ther,2019,13:3391-3404.
[7] 杨迪,郭越,张鹏,等.阿司匹林调控NLRP3/caspase-1/ GSDMD通路介导的焦亡途径减轻脂多糖诱导的急性肺损伤研究[J].中国药学杂志,2023,58(4):347-355.
[8] Fernández-Francos S,Eiro N,González-Galiano N,et al. Mesenchymal Stem Cell-Based Therapy as an Alternative to the Treatment of Acute Respiratory Distress Syndrome:Current Evidence and Future Perspectives [J]. Int J Mol Sci,2021,22(15):7850.
[9] 宇妥·元丹贡布著.李永年译.四部医典[M].北京:人民卫生出版社,1983:216.
[10] 强巴,郭胜亚,陈伦举,等.二十五味肺病丸改善斑马鱼微血管功能障碍及机制的探究[J].天津中医药大学学报,2021,40(6):758-763.
[11] 佚名.二十五味肺病丸:攻克顽固肺病[J].家庭医药,2009(12):32-33.
[12] 徐艳花.二十五味肺病丸加味治疗肺内感染150例[J].中国民族医药杂志,2007(9):16.
[13] 李晓朋,史志龙,龚普阳,等.基于网络药理学的藏药二十五味肺病丸防治新冠病毒肺炎(COVID-19)可行性分析及机制探讨[J].世界科学技术-中医药现代化,2021, 23(4):1086-1095.
[14] 朱雪,李珂,陈宪海,等.玉屏风散对煤烟相关可吸入颗粒物致肺损伤模型小鼠免疫功能的干预作用[J].中国实验方剂学杂志,2018,24(8):103-109.
[15] 刘春慧,梁群.脓毒症急性肺损伤模型研究进展[J].中国比较医学杂志,2022,32(11):113-120.
[16] 王全,史佳,吴建华,等.血红素氧合酶-1介导NAD表达在大鼠内毒素急性肺损伤中的作用[J].临床麻醉学杂志,2020,36(3):275-278.
[17] 刘俊波,李任增,马向阳.七氟醚对急性肺损伤大鼠肺组织形态学等的影响[J].西北药学杂志,2023,38(2):118-122.
[18] Fu S,Lu W,Yu W,et al. Protective effect of Cordyceps sinensis extract on lipopolysaccharide-induced acute lung injury in mice [J]. Biosci Rep,2019,39(6):BSR20190789.
[19] Ciesielska A,Matyjek M,Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling [J]. Cell Mol Life Sci,2021,78(4):1233- 1261.
[20] Diamond CE,Khameneh HJ,Brough D,et al. Novel perspectives on non-canonical inflammasome activation [J]. Immunotargets Ther,2015,4:131-141.
[21] 胡璐璐,赫玉宝,张方信.急进高原缺氧环境下TLR4、HIF-1α对肠黏膜屏障的影响[J].中国微生态学杂志,2017,29(10);1212-1218.
[22] Nova Z,Skovierova H,Calkovska A. Alveolar-Capillary Membrane-Related Pulmonary Cells as a Target in End- otoxin-Induced Acute Lung Injury [J]. Int J Mol Sci,2019, 20(4):831.
[23] 侯雯倩,刘东玲,海洋,等.麻杏石甘汤通过调节MAPK/ NF-κB通路缓解LPS致急性肺损伤的炎症反应[J].中药药理与临床,2023,39(3):1-7.
[24] 罗桢弋,曾启山,罗旭娟,等.肠神经胶质细胞源性神经营养因子对肠T淋巴细胞的影响及其在葡聚糖硫酸钠诱导的小鼠结肠炎中的作用[J].临床内科杂志,2023, 40(1):49-52.
[25] 张仁见智,于鑫溢,刘志刚.冠状动脉旁路移植术后心房颤动的预测与预防[J].临床心血管病杂志,2023,39(4):313-319.
|
|
|
|