|
|
Cloning, expression, purification of human blood-brain barrier permeability related gene Caveolin-1 |
ZHAO Shutao XU Yongjian CHEN Haoyun |
Department of Intensive Care, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, Guangzhou 510168, China |
|
|
Abstract Objective To clone Caveolin-1, a gene related to human blood-brain barrier permeability, and express it in Escherichia coli. and to purify and identify the protein finally. Methods According to the sequence of Caveolin-1 gene contained in the gene bank, the upstream and downstream primers were designed. The Caveolin-1 double strand was synthesized by PCR and then recombined with pET28a (+) vector. Positive clones were screened and identified by DNA sequence analysis. The constructed recombinant plasmid pET28a-Caveolin-1 was transfected into E. coli BL21 (DE3), and the expression of the fusion protein was induced by IPTG. The expressed product was purified by Ni2+-NTA affinity chromatography, identified by SDS-PAGE and Western blot. Results The Caveolin-1 DNA fragment amplified by PCR was identified as human Caveolin-1 gene. The recombinant human Caveolin-1 fusion protein was expressed by IPTG-induced DE3 strain containing the recombinant plasmid pET28a-Caveolin-1. The recombinant protein was purified by Ni2+-NTA affinity chromatography to obtain a fusion protein of higher purity. Conclusion This study successfully cloned the blood-brain barrier permeability-related gene Caveolin-1, and expressed and purified the protein to obtain a higher purity fusion protein, which laid a foundation for further relevant clinical research.
|
|
|
|
|
[1] Jian LK,Rosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemia [J]. Free Radic Biol Med,2005,39(4):71-80.
[2] Parton RG,Simons K. The multiple faces of caveolae [J]. Nat Rev Mol Cell Biol,2007,8(6):185-194.
[3] Song L,Ge S,Pachter JS. Caveolin-1 regulates expression of junctionassociatedproteins in brain microvascular endothelial cells [J]. Blood,2007,109(8):1515-1523.
[4] élizabeth Beauchesne,Desjardins P,Butterworth RF,et al. Up-regulation of caveolin-1 and blood-brain barrier breakdown are attenuated by N-acetylcysteine in thiamine deficiency [J]. Neurochem Int,2010,57(7):830-837.
[5] Choi KH,Kim HS,Park MS,et al. Regulation of Caveolin-1 expression determines early brain edema after experimental focal cerebral ischemia [J]. Stroke,2016,5(3):1336-1343.
[6] 叶棋浓.现代分子生物学技术与实验技巧[M].北京:化学工业出版社,2015.
[7] Janyou A,Wicha P,Jittiwat J,et al. Dihydrocapsaicin attenuates attenuates blood brain barrier and cerebral damage in focal cerebral ischemia/reperfusion via oxidative stress and inflammatory [J]. Sci Rep,2017,7(1):10 556.
[8] Frieler RA,Chung Y,Ahlers CG,et al. Genetic neutrophil deficiency ameliorates cerebral ischemia-reperfusion injury [J]. Exp Neurol,2017,S0014-4886(17):30 222-30 224.
[9] Su J,Liu J,Yan XY,et al. Cytoprotective effect of the UCP2-SIRT3 signaling pathway by decreasing mitochondrial oxidative stress on cerebral ischemia-reperfusion injury [J]. Int J Mol Sci,2017,18(7):E1599.
[10] Jian LK,Rosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemia [J]. Free Radic Biol Med,2005,39(11):71-80.
[11] Zhao YL,Song JN,Zhang M. Role of caveolin-1 in the biology of the blood-brain barrier [J]. Rev Neurosci,2014, 25(2):247-254.
[12] Mandyam CD,Schilling JM,Cui W,et al. Neuron-targeted caveolin-1 improves molecular signaling, plasticity, and behavior dependent on the hippocampus in adult and aged mice [J]. Biol Psychiatry,2017, 81(2):101-110.
[13] Choi KH,Kim HS,Park MS,et al. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation [J]. Oncotarget,2016,7(42):67 857-67 867.
[14] Nag S,Manias JL,Kapadia A,et al. Molecular changes associated with the protective effects of angiopoietin-1 during blood-brain barrier breakdown postinjury [J]. Mol Neurobiol,2017,54(6):4232-4242.
[15] 钟义良,张融融,黄思源,等.急性脑梗死患者血清陷窝蛋白1水平与早期神经功能恶化的关系[J].上海交通大学学报:医学版,2017,37(12):1678-1681.
[16] Han F,Zhu HG. Caveolin-1 regulating the invasion and expression of matrix metalloproteinase (MMPs) in pancreatic carcinoma cells [J]. J Surg Res,2010,159(1):443-450.
[17] Gu X,Reagan AM,McClellan ME,et al. Caveolins and caveolae in ocular physiology and pathophysiology [J]. Prog Retin Eye Res,2017(56):84-106.
[18] Kovtun O,Tillu VA,Jung W,et al. Structural insights into the organization of the cavin membrane coat complex [J]. DevCell,2014,31(4):405-419.
[19] Busija AR,Patel HH,Insel PA,et al. Caveolins and cavins in the trafficking,maturation,and degradation of caveolae:implications for cell physiology [J]. Am J Physiol Cell Physiol,2017,312(4):C459-C477.
[20] Grzegorz S. Caveolae,caveolins,cavins,and endothelial cell function:new insights [J]. Frontiers in Physiology,2011, 2(2):120. |
|
|
|