|
|
Exploring the application of machine learning in predicting the effect of acupuncture for insomnia based on brain functional connectivity |
YIN Xuejiao1 JIANG Tongfei1 CHEN Zhaoyi1 SONG Zhangxiao2 LI Bin1 GUO Jing1 |
1.Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China;
2.School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100105, China
|
|
|
Abstract Acupuncture is one of the effective ways to treat insomnia, but because it is based on clinical experience, the treatment protocol has yet to be optimized, and the efficacy is mainly subjective assessment, with significant differences in individual efficacy. Therefore, it is important to screen effective populations for individual identification markers to predict efficacy and optimize acupuncture treatment protocols. Machine learning (ML) for classification and prediction algorithms are rapidly becoming tools for disease diagnosis, prediction, and classification. In contrast, magnetic resonance imaging has revealed that the brain functional connectivity (FC) of insomniac individuals is highly specific, with specific patterns of change before and after acupuncture, and can be used as a marker to track treatment response. This paper proposes to explore the feasibility of using the classification algorithm model in ML to predict the efficacy of acupuncture treatment for insomnia based on FC technology, in order to break the bottleneck of “empirical treatment” and optimize the acupuncture treatment plan.
|
|
|
|
|
[1] 苏亮,陆峥.2017年中国失眠症诊断和治疗指南解读[J].世界临床药物,2018,39(4):217-222.
[2] 唐启盛,孙文军,曲淼.中国民族医药治疗成人失眠的专家共识[J].北京中医药大学学报,2022,45(1):21-28.
[3] Palagini L,Faraguna U,Mauri M,et al. Association between stress-related sleep reactivity and cognitive processes in insomnia disorder and insomnia subgroups:preliminary results [J]. Sleep Med,2016,19:101-107.
[4] Bjor y I,J rgensen VA,Pallesen S,et al. The Prevalence of Insomnia Subtypes in Relation to Demographic Characteristics,Anxiety,Depression,Alcohol Consumption and Use of Hypnotics [J]. Front Psychol,2020,11:527.
[5] Bi Q,Goodman KE,Kaminsky J,et al. What is Machine Learning? A Primer for the Epidemiologist [J]. Am J Epidemiol,2019,188(12):2222-2239.
[6] 李荫龙,郭义.论针灸的反应与效应[J].中国中医基础医学杂,2015,21(12):1553-1554,1573.
[7] 李长生,吴优,陈金枝,等.基于现代文献浅谈针刺得气[J].中国民族民间医药,2021,30(16):55-57,76.
[8] 尹涛.基于机器学习和脑肠多维数据特征的针刺治疗功能性消化不良疗效预测研究[D].成都:成都中医药大学,2021.
[9] 尹慧.浅议针刺敏感度[J].针灸学报,1992(2):4-6.
[10] Finn ES,Shen X,Scheinost D,et al. Functional connectome fingerprinting:identifying individuals using patterns of brain connectivity [J]. Nat Neurosci,2015,18(11):1664-1671.
[11] 史安平,于瀛,胡博,等.全脑功能连接模式分析研究及临床应用进展[J].中国介入影像与治疗学,2021,18(7):430-433.
[12] Li C,Dong M,Yin Y,et al. Abnormal whole-brain func tional connectivity in patients with primary insomnia [J]. Neuropsychiatr Dis Treat,2017,13:427-435.
[13] Fasiello E,Gorgoni M,Scarpelli S,et al. Functional con- nectivity changes in insomnia disorder:A systematic review [J]. Sleep Med Rev,2022,61:101569.
[14] 秦海霞,赵文瑞,喻婧,等.失眠患者静息态脑网络的改变:网络内与网络间的功能连接异常[J].心理科学进展,2019,27(2):289-300.
[15] Schiel JE,Holub F,Petri R,et al. Affect and Arousal in Insomnia:Through a Lens of Neuroimaging Studies [J]. Curr Psychiatry Rep,2020,22(9):44.
[16] Li Z,Chen R,Guan M,et al. Disrupted brain network topology in chronic insomnia disorder:A resting-state fMRI study [J]. Neuroimage Clin,2018,18:178-185.
[17] Wang T,Yan J,Li S,et al. Increased insular connectivity with emotional regions in primary insomnia patients:a resting- state fMRI study [J]. Eur Radiol,2017,27(9):3703-3709.
[18] Li S,Tian J,Li M,et al. Altered resting state connectivity in right side frontoparietal network in primary insomnia patients [J]. Eur Radiol,2018,28(2):664-672.
[19] Drysdale AT,Grosenick L,Downar J,et al. Resting-state
connectivity biomarkers define neurophysiological subtypes of depression [J]. Nat Med,2017,23(1):28-38.
[20] Du Y,Fu Z,Calhoun VD. Classification and Prediction of Brain Disorders Using Functional Connectivity:Promising but Challenging [J]. Front Neurosci,2018,12:525.
[21] 胡俊霞,袁芳,张帆,等.针刺治疗失眠的功能磁共振成像研究进展[J].中国医药导报,2020,17(30):56-58.
[22] 赵婷,徐辉,赵腾,等.健脑安神法针刺治疗失眠及对磁共振脑功能成像的影响[J].中国针灸,2021,41(7):767-773.
[23] 蒋燕,石晓花,王钰凯,等.针刺干预原发性失眠患者不同脑区的任务态fMRI研究[J].中国实验诊断学,2020,
24(6):903-906.
[24] Gao S,Calhoun VD,Sui J. Machine learning in major depression:From classification to treatment outcome prediction [J]. CNS Neurosci Ther,2018,24(11):1037-1052.
[25] Schwartz AR,Cohen-Zion M,Pham LV,et al. Brief digital sleep questionnaire powered by machine learning prediction models identifies common sleep disorders [J]. Sleep Med,2020,71:66-76.
[26] 魏晓雅,张娜,李金玲,等.基于磁共振成像和机器学习的针刺镇痛神经标志物研究现状[J].针刺研究,2021,46(6):505-509.
[27] Yang XJ,Liu L,Xu ZL,et al. Baseline Brain Gray Matter Volume as a Predictor of Acupuncture Outcome in Treating Migraine [J]. Front Neurol,2020,11:111.
[28] Tu Y,Ortiz A,Gollub RL,et al. Multivariate resting-state functional connectivity predicts responses to real and sham acupuncture treatment in chronic low back pain [J]. Neuroimage Clin,2019,23:101885.
[29] 尹涛,孙睿睿,何昭璇,等.基于静息态功能脑网络预测针刺治疗功能性消化不良临床疗效[J].中华中医药杂志,2020,35(5):2581-2584.
[30] Mu J,Chen T,Quan S,et al. Neuroimaging features of whole-
brain functional connectivity predict attack frequency of migraine [J]. Hum Brain Mapp,2020,41(4):984-993.
[31] Yu S,Xie M,Liu S,et al. Resting-State Functional Connectivity Patterns Predict Acupuncture Treatment Response in Primary Dysmenorrhea [J]. Front Neurosci,2020,14:559191.
[32] He D,Ren D,Guo Z,et al. Insomnia disorder diagnosed by resting-state fMRI-based SVM classifier [J]. Sleep Med,2022,95:126-129.
[33] Lu Q,Zhang W,Yan H,et al. Connectomic disturbances
underlying insomnia disorder and predictors of treatment response [J]. Front Hum Neurosci,2022,16:960350.
[34] 骆文婷.基于脑功能特征探讨耳穴迷走神经刺激治疗原发性失眠症的机制与疗效预测研究[D].广州:广州中医药大学,2021.
[35] Arbabshirani MR,Plis S,Sui J,et al. Single subject pre- diction of brain disorders in neuroimaging:Promises and pitfalls [J]. Neuroimage,2017,145(Pt B):137-165.
[36] 尹涛,何昭璇,孙睿睿,等.机器学习在针灸研究领域的应用现状与展望[J].中国针灸,2020,40(12):1383-1386.
[37] Ju Y,Horien C,Chen W,et al. Connectome-based models can predict early symptom improvement in major depressive disorder [J]. J Affect Disord,2020,273:442-452.
[38] Poldrack RA. Region of interest analysis for fMRI [J]. Soc Cogn Affect Neurosci,2007,2(1):67-70.
[39] Benjamins JS,Migliorati F,Dekker K,et al. Insomnia heter-
ogeneity:Characteristics to consider for data-driven multi-
variate subtyping [J]. Sleep Med Rev,2017,36:71-81.
[40] 常婷.不同亚型慢性失眠患者与焦虑抑郁状态的相关性研究[D].银川宁夏医科大学,2019.
[41] 李亚莉,宁文雅,谭立文,等.不同临床亚型失眠患者的心理影响因素特点[J].中南大学学报(医学版),2019,
44(2):186-192.
[42] Calhoun VD,Miller R,Pearlson G,et al. The chronnec-
tome:time-varying connectivity networks as the next frontier in fMRI data discovery [J]. Neuron,2014,84(2):262-274.
[43] 尹涛,何昭璇,兰蕾,等.基于机器学习与神经影像表征的针灸疗效预测研究现状与展望[J].世界中医药,2020(15):11,1551-1554.
|
|
|
|