|
|
Comparative study of Guangchenpi and Chenpi under the influence of planting environment on secondary metabolites |
SHI Hongchao1 SHANG Xueying1 CHEN Mingquan1 LUO Zhuoya2 QIN Ren’an1 HE Fenglei1 SUN Dong1 |
1.Guangzhou Baiyunshan Pharmaceutical Co. Chenliji, Guangdong Province, Guangzhou 510288, China;
2.Guangdong Institute For Drug Control, Guangdong Province, Guangzhou 510663, China |
|
|
Abstract Objective To compare the effects of planting environment on secondary metabolites between Guangchenpi and Chenpi. Methods Liquid chromatography-mass spectrometry was used to analyze and identify the differential components in Chenpi samples from different varieties. The peak area ratio of the differential flavonoid components between Guangchenpi and Chenpi at 283 nm, the peak area ratio of the differential components in Chenpi from different regions was analyzed. Results There were six differential components Chenpi samples from different regions, including hesperidin, sinensetin, 6-demethoxyhesperetin, nobiletin, hesperetin, and 5-demethylnobiletin. The ratio sinensetin/6-demethoxy- hesperidin>0.60 or hesperidin/5-demethoxyhesperidin>7.00 was Guangchenpi, and the ratio sinensetin/6-deme-thoxyhesperidin≤0.60 or hesperidin/5-demethoxyhesperidin≤7.00 was Chenpi. Conclusion In this study, the peak area ratio of sinensetin/6-demethoxyhesperidin>0.60 or hesperidin/5-demethylnobiletin>7.00 at 283 nm wavelength is used as the basis for the determination of Guangchenpi, which can improve the convenience and universality of the classification index of Chenpi origin.
|
|
|
|
|
[1] Yang L,Wen KS,Ruan X,et al. Response of Plant Secondary Metabolites to Environmental Factors [J]. Molecules,2018,23(4):762.
[2] Pant P,Pandey S,Dall’Acqua S. The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants:A Literature Review [J]. Chem Biodivers,2021,18(11):e2100345.
[3] 黄璐琦,陈美兰,肖培根.中药材道地性研究的现代生物学基础及模式假说[J].中国中药杂志,2004,29(6):5- 7,121.
[4] 黄璐琦,郭兰萍.环境胁迫下次生代谢产物的积累及道地药材的形成[J].中国中药杂志,2007,32(4):277-280.
[5] Erb M,Kliebenstein DJ. Plant secondary metabolites as defenses,regulators and primary metabolites-The blurred functional trichotomy [J]. Plant Physiology,2020,184(1):39-52.
[6] 郭兰萍,周良云,康传志,等.药用植物适应环境胁迫的策略及道地药材“拟境栽培”[J].中国中药杂志,2020,45(9):1969-1974.
[7] 齐婧婉,杨景明,姜华,等.环境因素与药用植物次生代谢产物关系的研究现状[J]. 锦州医科大学学报,2019,40(5):107-110.
[8] Shuncang Z,Lei Z,Zou H,et al. Effects of Light on Secondary Metabolite Biosynthesis in Medicinal Plants [J]. Front Plant Sci,2021. DOI:10.3389/fpls.2021.781236.
[9] Mohammad M,Saman M,Smith D. The biological approaches of altering the growth and biochemical properties of medicinal plants under salinity stress [J]. Appl Microbiol Biotechnol,2021,105(19):7201-7213.
[10] 张艳霞,吕丹桂,耿康奇,等.水分胁迫对赤霞珠葡萄果实品质和甲氧基吡嗪含量的影响[J].果树学报,2022, 39(6):1017-1028.
[11] 李时珍.本草纲目[M].张守康校注.北京:中国中医药出版社,1998:757.
[12] 赖昌林,吴鸿,倪根金.中药广陈皮与新会皮药名出现年代考[J].中国中药杂志,2017,42(4):789-794.
[13] 国家药典委员会.中华人民共和国药典[S]一部.北京:中国医药科技出版社,2020.
[14] 莫鑫.一块果皮如何串起百亿规模产业链[N].新华每日电讯,2022-06-16(012).
[15] 江门市市场监督管理局.DB4407/T70-2021地理标志产品新会陈皮[S].北京:中国标准出版社,2021.
[16] 宋漪.新会区地质环境承载能力评价[J].地下水,2021, 43(5):160-162,197.
[17] 宋玉鹏,陈海芳,谭舒舒,等.不同陈皮来源药材中橙皮苷、川陈皮素、橘皮素和辛弗林的含量比较[J].时珍国医国药,2017,28(9):2061-2064.
[18] 罗琥捷,杨宜婷,李晓伟,等.11个品种来源陈皮中多甲氧基黄酮的测定[J].中成药,2017,39(3):565-569.
[19] 杨放晴,何丽英,杨丹,等.不同陈化时间广陈皮中黄酮类成分的UPLC-Q-Orbitrap HRMS分析[J].中国实验方剂学杂志,2021,27(12):125-132.
[20] 苏薇薇,郑玉莹,彭维,等.广陈皮及新会柑普茶质量与保健功效研究[M].广州:中山大学出版社,2020:31-43.
[21] 胡继藤,刘基华,陈富钦,等.基于HPLC图谱和化学计量学方法对不同产地与种源陈皮的鉴别研究[J].今日药学,2019,29(6):383-386.
[22] 余梅,李尚科,杨菲,等.基于近红外光谱技术与优化光谱预处理的陈皮产地鉴别研究[J].分析测试学报,2021, 40(1):65-71.
[23] 李富荣,刘雯雯,文典,等.基于矿质元素指纹分析的陈皮产地溯源研究[J].食品工业科技,2022,43(11):295- 302.
[24] Mengshi L,Kanghui W,Chen B,et al. Intraspecific DNA Barcoding and Variation Analysis for Citri Reticulatae Pericarpium of Citrus reticulata “Chachi”[J]. Evid Based Complement Alternat Med,2021. DOI:10.1155/2021/260 9935.
[25] 钟永翠,巩珺,徐家能,等.基于3种黄酮类化合物含量比值鉴别广陈皮道地性[J].药物分析杂志,2017,37(1):20-29. |
|
|
|