|
|
Research progress of exosomes from different sources in osteoporosis |
CHEN Chao1 WANG Chunqing2 |
1.Clinical Medicine School, Guizhou Medical University, Guizhou Province, Guiyang 550000, China;
2.Department of Emergency Orthopedics, Affiliated Hospital of Guizhou Medical University, Guizhou Province, Guiyang 550000, China |
|
|
Abstract Osteoporosis is the common disease caused by abnormal bone metabolism, and its main mechanism is reduced osteogenesis and enhanced osteoclast absorption. In recent years, a large number of studies have found that exosomes from different sources play an important role in osteoblast formation and proliferation, osteoclast differentiation and absorption, remodeling of bone microstructure and bone mineralization, tumor staging and metastasis, and bone microenvironment, especially in the field of osteoporosis, through their own or synergistic actions. Exosomes from different sources affect bone metabolism of target cells through osteogenic or osteoclastic metabolic pathways through miRNA in exosomes, and participate in the treatment of anti-osteoporosis and microinterpretation of diseases. Therefore, this article reviews the research progress of exosomes from different sources in osteoporosis, aiming to provide a new research direction for clinical treatment of osteoporosis.
|
|
|
|
|
[1] Shi H,Jiang X,Xu C,et al. MicroRNAs in Serum Exosomes as Circulating Biomarkers for Postmenopausal Osteoporosis [J]. Front Endocrinol(Lausanne),2022,13:819056.
[2] Lu J,Zhang Y,Liang J,et al. Role of Exosomal MicroRNAs and Their Crosstalk with Oxidative Stress in the Pathogenesis of Osteoporosis [J]. Oxid Med Cell Longev,2021,2021:6301433.
[3] Shan Sk,Lin X,Li F,et al. Exosomes and Bone Disease [J]. Curr Pharm Des,2019,25(42):4536-4549.
[4] Liu M,Sun Y,Zhang Q. Emerging Role of Extracellular Vesicles in Bone Remodeling [J]. J Dent Res,2018,97(8):859-868.
[5] Wang Q,Shen X,Chen Y,et al. Osteoblasts-derived exosomes regulate osteoclast differentiation through miR-503- 3p/Hpse axis [J]. Acta Histochem,2021,123(7):151790.
[6] 陈锦成,朱国涛,秦晓飞,等.龟鹿二仙胶含药血清介导大鼠骨髓间充质干细胞的成骨分化[J].中国组织工程研究,2022,26(13):2020-2026.
[7] 梁思敏,蔡则成,王志强,等.结核杆菌裂解物刺激后的成骨细胞来源外泌体对破骨细胞的影响[J].中国脊柱脊髓杂志,2021,31(1):69-75.
[8] Lyu H,Xiao Y,Guo Q,et al. The Role of Bone-Derived Exosomes in Regulating Skeletal Metabolism and Extraosseous Diseases [J]. Front Cell Dev Biol,2020,8:89.
[9] 唐彬彬,刘康,吴连国,等.强骨饮调节破骨细胞外泌体影响成骨细胞分化的初步研究[J].中国骨质疏松杂志,2020,26(11):1598-1603.
[10] Qiu M,Zhai S,Fu Q,et al. Bone Marrow Mesenchymal Stem Cells-Derived Exosomal MicroRNA-150-3p Promotes Osteoblast Proliferation and Differentiation in Osteoporosis [J]. Hum Gene Ther,2021,32(13/14):717-729.
[11] Zhang Y,Cao X,Li P,et al. microRNA-935-modified bone marrow mesenchymal stem cells-derived exosomes enhance osteoblast proliferation and differentiation in osteoporotic rats [J]. Life Sci,2021,272:119204.
[12] 周桥,冯兴梅.BM-MSCs分泌外泌体中miR-21-3p在糖尿病种植体周骨代谢失衡中调控作用的机制[C].中华口腔医学会第九次全科口腔医学学术会议,2018:153.
[13] Zuo R,Liu M,Wang Y,et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling [J]. Stem Cell Res Ther,2019,10(1):30.
[14] 张华,郭澍,佟爽,等.脂肪干细胞外泌体提取方法的改良及其对成骨效应的影响[J].中国医科大学学报,2020, 49(2):115-119,128.
[15] Nakao Y,Fukuda T,Zhang Q,et al. Exosomes from TNF- α- treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss [J]. Acta Biomater,2021,122:306-324.
[16] 李婧,张发奎,邓智元,等.脂肪干细胞外泌体对人牙髓干细胞增殖与成骨分化的影响[J].中国临床药理学杂志,2021,37(21):2910-2913.
[17] Yu L,Hu M,Cui X,et al. M1 macrophage-derived exosomes aggravate bone loss in postmenopausal osteoporosis via a microRNA-98/DUSP1/JNK axis [J]. Cell Biol Int,2021,45(12):2452-2463.
[18] 徐佳莹.牙龈卟啉单胞菌作用下巨噬细胞源性外泌体对破骨细胞分化的影响[D].沈阳:中国医科大学,2021.
[19] 张程,包丽荣,杨于桃,等.M2巨噬细胞外泌体对高糖高胰岛素条件下小鼠骨髓间充质干细胞成骨分化的影响[J].四川大学学报(医学版),2022,53(1):63-70.
[20] 张亮,廖勇群,夏秦川,等.铁死亡调控信号通路以及在相关疾病中的研究进展[J].中国临床药理学与治疗学,2022,27(2):227-234.
[21] Li S,Zhao Y,Chen W,et al. Exosomal ephrinA2 derived from serum as a potential biomarker for prostate cancer [J]. J Cancer,2018,9(15):2659-2665.
[22] Oey O,Ghaffari M,Li JJ,et al. Application of extracellular vesicles in the diagnosis and treatment of prostate cancer:Implications for clinical practice [J]. Crit Rev Oncol Hematol,2021,167:103495.
[23] Lázaro-Ibá?觡ez E,Lunavat TR,Jang SC,et al. Distinct prostate cancer-related mRNA cargo in extracellular vesicle subsets from prostate cell lines [J]. BMC Cancer,2017, 17(1):92.
[24] Tian G,Hu K,Qiu S,et al. Exosomes derived from PC-3 cells suppress osteoclast differentiation by downregulating miR-148a and blocking the PI3K/AKT/mTOR pathway [J]. Exp Ther Med,2021,22(5):1304.
[25] 齐永强.肝癌细胞外泌体来源miR-6756-3p诱导破骨细胞分化的机制研究[D].武汉:华中科技大学,2020.
[26] Xu Q,Cui Y,Luan J,et al. Exosomes from C2C12 myoblasts enhance osteogenic differentiation of MC3T3-E1 pre-osteoblasts by delivering miR-27a-3p [J]. Biochem Biophys Res Commun,2018,498(1):32-37.
[27] Herrmann M,Engelke K,Ebert R,et al. Interactions between Muscle and Bone-Where Physics Meets Biology [J]. Biomolecules,2020,10(3):432.
[28] 杨承源.脑组织来源外泌体在骨折合并脑外伤模型骨愈合中的作用及机制研究[D].苏州:苏州大学,2018.
[29] Wang G,Wang F,Zhang L,et al. miR-133a silencing rescues glucocorticoid-induced bone loss by regulating the MAPK/ERK signaling pathway [J]. Stem Cell Res Ther,2021,12(1):215.
[30] 徐慧君,张咪,史东梅,等.胎牛血清外泌体对成骨细胞增殖的作用[J].中国组织工程研究,2020,24(31):4961- 4965. |
|
|
|