|
|
Effect of Fluoxetine on synaptic plasticity of optic cortical neuron cells in monocular deprived amblyopia rats and its related mechanism |
LUO Xianling WU Luoling#br# |
Department of Ophthalmology, the First People’s Hospital of Fuyang District, Zhejiang Province, Hangzhou 311400, China
|
|
|
Abstract Objective To investigate the effect of Fluoxetine on synaptic plasticity of optic cortical neuron cells in monocular deprived amblyopia rats and its related mechanism. Methods Ten of 60 SPF male SD rats were selected as the control group, and the other 50 rats were used to construct the monocular deprived amblyopia rat model. The 50 rats with successful modeling were divided into positive drug group, model group, low, medium, and high dose groups by random number table method, with 10 rats in each group. The low, medium, and high dose groups were intraperitoneally injected with 5, 10, and 20 mg/(kg·d) Fluoxetine; the positive drug group was intraperitoneally injected with 80 mg/(kg·d) Levodopa; and the model group and the control group were intraperitoneally injected with the same amount of normal saline. Each group was treated for 28 days. P100 latency and P100 amplitude in each group were measured; the ultrastructural changes of synapses of neurons in visual cortex in each group were observed; the ERK1/2, p-ERK1/2, CREB, and p-CREB protein in visual cortex in each group were detected. Results The P100 latency, synaptic gap, and synaptic density thickness in the model group were higher than those in the control group, and the P100 amplitude and p-ERK1/2/ERK1/2, and p-CREB/CREB in visual cortex were lower than those in the control group (P < 0.05). The P100 latency, synaptic gap, and synaptic density thickness in the low, medium, and high dose groups were lower than those in the model group, and the P100 amplitude, p-ERK1/2/ERK1/2, and p-CREB/CREB in the visual cortex were higher than those in the model group; the P100 latency, synaptic space, and synaptic density thickness in the middle and high dose groups were lower than those in the low dose group, and the P100 amplitude, p-ERK1/2/ERK1/2, and p-CREB/CREB in the visual cortex were higher than those in the low dose group; the P100 latency, synaptic gap, and synaptic density thickness in the high-dose group were lower than those in the medium dose group, and the P100 amplitude, p-ERK1/2/ERK1/2, and p-CREB/CREB in the visual cortex were higher than those in the medium dose group (P < 0.05). Compared with the model group, the synaptic structure of the visual cortex neurons in the low, medium, and high dose groups was slightly clear, and the myelin sheath lamellar structure was clear. Conclusion Fluoxetine can remodel the synaptic ultrastructure of visual cortex neurons in monocular deprived amblyopic rats, activate the structural plasticity of visual cortex, and improve the visual function of rats, which may be achieved by activating ERK/CREB pathway.
|
|
|
|
|
[1] 王卉,宋德胜,钱晶,等.儿童弱视遮盖治疗生活质量量表的汉化及信度效度检验[J].中国护理管理,2020,15(10):1464-1467.
[2] 褚婷,王继红.图像视觉诱发电位自律空间频率刺激疗法治疗儿童弱视的疗效[J].国际眼科杂志,2020,20(6):1048-1053.
[3] 罗瑜琳,罗诗诗,刘政海,等.IGF-1介导的丰富环境对成年弱视小鼠视皮层可塑性的影响[J].国际眼科杂志,2020, 11(1):224-229.
[4] 李发标,孔祥斌,麦雪燏,等.氟西汀对弱视成年大鼠视皮层17区NMDA-NR的影响[J].广西医科大学学报,2020, 37(8):1488-1493.
[5] 安勇,王娜娜,路云云.精细目力训练联合视觉感知训练在儿童弱视治疗中的临床应用价值[J].国外医学地理杂志,2019,40(1):56-58.
[6] 张新月,刘虎.儿童弱视的非视觉功能损害的研究进展[J].中国中医眼科杂志,2022,32(2):142-145.
[7] 韩立坡、王凤仙、张诚玥.精细训练联合虚拟现实视觉训练治疗弱视的疗效分析[J].国际眼科杂志,2020,20(9):1649-1652.
[8] 解来青.氟西汀对成年视皮层的去成熟化及对成年大鼠弱视的治疗作用研究[D].苏州:苏州大学,2018.
[9] 宋加兴,张清秀,何磊,等.美金刚通过调节ERK,CREB信号通路及突触可塑性保护脑缺血再灌注小鼠的作用研究[J].中国比较医学杂志,2019,29(6):1-7.
[10] 王凌霄.ERK信号通路在慢性应激大鼠脑内表达及盐酸氟西汀治疗中作用机制研究[D].上海:上海交通大学,2012.
[11] 王智,袁学双,费志刚,等.脑衰反应调节蛋白2在单眼形觉剥夺性弱视大鼠视皮层的表达[J].中华实验眼科杂志,2019,37(2):88-92.
[12] 杨栋,喻妍,杨萍,等.慢性应激抑郁模型大鼠海马Trek-1,GFAP表达情况及氟西汀的干预作用[J].中国临床心理学杂志,2018,26(1):47-50.
[13] 柴金苗,李钦青,李琦,等.基于PSD-95-NMDAR-nNOS通路研究针刺对单眼形觉剥夺大鼠视皮质神经细胞突触可塑性[J].中华中医药杂志,2020,35(9):4615-4617.
[14] 陈梦兰,何花,刘芸.屈光参差儿童的斜视,弱视特征及立体视功能的差异性分析[J].华中科技大学学报:医学版,2020,49(5):602-608.
[15] 杨璐,李兵,潘含枫.视觉训练系统对屈光性弱视治疗的疗效及视功能的影响[J].广东医学,2020,41(6):609-613.
[16] 晁媛媛,苟琦,王侠.视知觉感知训练配合护理干预对3~6岁近视性弱视儿童视力和屈光度的影响[J].实用临床医药杂志,2019,23(21):111-114.
[17] 冼剑英.不同弱视治疗方法在弱视儿童治疗效果的临床分析[J].临床医药文献电子杂志,2019,6(73):33.
[18] 李兰,丁素真,杨春先,等.弱视视觉诱发电位波幅降低提示视皮层突触可塑性受损[J].中国斜视与小儿眼科杂志,2019,11(3):33,后插7-后插8,34.
[19] 于春泉,李珠,徐一兰,等.交泰丸合用盐酸氟西汀治疗抑郁症心肾不交证的临床疗效观察[J].天津中医药,2020, 37(3):291-295.
[20] 李彬,晁小蕊,李权达,等.氟西汀对单眼形觉剥夺性弱视大鼠视觉功能及视皮质突触可塑性的影响[J].中华实用诊断与治疗杂志,2021,35(11):1159-1163.
[21] 李瑞英,吕星瑶,朱德海.视觉可塑性和弱视治疗中的新兴途径[J].中国斜视与小儿眼科杂志,2020,28(3):37-40.
[22] 袁芳,李雪莲.鼠神经生长因子联合甲钴胺对视神经炎患者视力及视野缺损的影响[J].中国医药导刊,2020, 22(2):96-99.
[23] 杜艳军,陶一鸣,田青,等.基于ERK/CREB信号通路探讨艾灸肾俞穴改善去卵巢合D-半乳糖阿尔茨海默病样大鼠神经元丢失的机制研究[J].中华中医药学刊,2021,39(6): 1-7,后插1-后插3.
[24] 朱建坡,梁冰.右美托咪定调节MAPK/ERK-CREB通路对大鼠海马神经元凋亡的保护作用[J].中风与神经疾病杂志,2020,37(4):317-321.
[25] 金霏,梁秋实,陈克研,等.艾司西酞普兰对APP/PS1小鼠海马神经元突触功能及对BDNF-TrkB-CREB信号通路的影响[J].解剖学研究,2020,33(1):19-23. |
|
|
|