|
|
Research progress on the mechanism of macrophages in metabolic associated fatty liver disease |
TAN Liting1 ZENG Shenglan1 CHEN Weiyu1 CAO Yanggang1 HU Jin1 LONG Xiaorong1 TAO Ran1 MAO Dewen2 |
1.Graduate School, Guangxi University of Chinese Medicine, Guangxi Zhuang Autonomous Region, Nanning 530000, China;
2.Department of Hepatology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi Zhuang Autonomous Region, Nanning 530023, China |
|
|
Abstract The global prevalence of metabolic associated fatty liver disease (MAFLD) is on the rise, and MAFLD has now become a global health problem. Macrophages have the ability to scavenge pathogenic microorganisms, antigen presentation, and promote or inhibit the hepatic inflammatory response and are directly involved in the development of liver diseases and injury repair. The mechanism of macrophage in MAFLD and its clinical significance have gradually become a current medical research hotspot. Recent studies have shown that macrophages may become new therapeutic tools and therapeutic targets for MAFLD. In this paper, the classification and function of macrophages and their role in different stages of MAFLD pathogenesis are discussed and summarized in order to provide relevant ideas and new perspectives for clinical prevention and treatment of MAFLD.
|
|
|
|
|
[1] López-Méndez I,Méndez-Maldonado K,Manzo-Francisco LA,et al. G protein-coupled receptors:Key molecules in metabolic associated fatty liver disease development [J]. Nutr Res,2021,87:70-79.
[2] Thoen RU,Longo L,Neto SC,et al. Low levels of Lysosomal Acid Lipase(LAL) activity increases necroinflammation in adult patients with biopsy-proven metabolic associated fatty liver disease [J]. Clin Res Hepatol Gastroenterol,2021,45(6):101638.
[3] Muthiah MD,Sanyal AJ. Burden of Disease due to Nonalcoholic Fatty Liver Disease [J]. Gastroenterol Clin North Am,2020,49(1):1-23.
[4] Méndez-Sánchez N,Córdova-Gallardo J,Barranco-Fragoso B,et al. Hepatic Dendritic Cells in the Development and Progression of Metabolic Steatohepatitis [J]. Front Immunol,2021,12:641240.
[5] 向阳林,代鑫,龚建平.Kupffer细胞在MAFLD发病机制中的作用[J].临床医学研究与实践,2021,6(20):195-198.
[6] Kj?覸r MB,George J,Kazankov K,et al. Current perspectives on the pathophysiology of metabolic associated fatty liver disease:are macrophages a viable target for therapy? [J]. Expert Rev Gastroenterol Hepatol,2021,15(1):51-64.
[7] Vierhout M,Ayoub A,Naiel S,et al. Monocyte and macrophage derived myofibroblasts:Is it fate? A review of the current evidence [J]. Wound Repair Regen,2021,29(4):548-562.
[8] Wang X,Rao H,Zhao J,et al. STING expression in monocyte-derived macrophages is associated with the progression of liver inflammation and fibrosis in patients with nonalcoholic fatty liver disease [J]. Lab Invest,2020,100(4):542-552.
[9] Reid DT,Reyes JL,McDonald BA,et al. Kupffer Cells Undergo Fundamental Changes during the Development of Experimental NASH and Are Critical in Initiating Liver Damage and Inflammation [J]. PLoS One,2016,11(7):e159524.
[10] Wan J,Benkdane M,Teixeira-Clerc F,et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis:a protective mechanism against alcoholic and nonalcoholic fatty liver disease [J]. Hepatology,2014,59(1):130-142.
[11] Chen J,Deng X,Liu Y,et al. Kupffer Cells in Non-alcoholic Fatty Liver Disease:Friend or Foe? [J]. Int J Biol Sci,2020,16(13):2367-2378.
[12] Sakamoto Y,Yoshio S,Doi H,et al. Serum soluble sialic acid-binding immunoglobulin-like lectin-7 concentration as an indicator of liver macrophage activation and advanced fibrosis in patients with non-alcoholic fatty liver disease [J]. Hepatol Res,2020,50(4):466-477.
[13] Kazankov K,J?覬rgensen SMD,Thomsen KL,et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis [J]. Nat Rev Gastroenterol Hepatol,2019,16(3):145-159.
[14] Martinez FO,Gordon S. The M1 and M2 paradigm of macrophage activation:time for reassessment [J]. F1000Prime Rep,2014,6:13.
[15] Dou L,Shi X,He X,et al. Macrophage Phenotype and Function in Liver Disorder [J]. Front Immunol,2019,10:3112.
[16] Yao X,Dong G,Zhu Y,et al. Leukadherin-1-Mediated Activation of CD11b Inhibits LPS-Induced Pro-inflammatory Response in Macrophages and Protects Mice Against Endotoxic Shock by Blocking LPS-TLR4 Interaction [J]. Front Immunol,2019,10:215.
[17] Mossanen JC,Krenkel O,Ergen C,et al. Chemokine(C-C motif)receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury [J]. Hepatology,2016,64(5):1667-1682.
[18] Lichtnekert J,Kawakami T,Parks WC,et al. Changes in macrophage phenotype as the immune response evolves [J]. Curr Opin Pharmacol,2013,13(4):555-564.
[19] Krenkel O,Tacke F. Liver macrophages in tissue homeostasis and disease [J]. Nat Rev Immunol,2017,17(5):306-321.
[20] Baeck C,Wei X,Bartneck M,et al. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2(monocyte chemoattractant protein 1)accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice [J]. Hepatology,2014,59(3):1060-1072.
代谢相关脂肪性肝病(metabolic associated fatty liver disease,MAFLD),以前称为非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD),以脂肪沉积在肝内为主要临床表现,它是一系列肝脏疾病从简单的脂肪变性到脂肪性肝炎,进展为肝纤维化甚至可能导致肝硬化及肝细胞癌(hepatocellular carcinoma,HCC)[1-2]。MAFLD正逐渐成为世界范围内主要的慢性肝病之一,据统计,全球约25%的人患有MAFLD[3]。目前,MAFLD发病机制尚未完全明确,可能与免疫细胞损伤、肝毒性脂质的积累等多种因素有关[4]。
近年来,在MAFLD发病机制中,巨噬细胞引起了广大学者的关注。巨噬细胞是固有免疫细胞,其主要存在于肝脏中,肝内巨噬细胞以Kupffer细胞(Kupffer cell,KC)为主,占总数的80%~90%[5]。肝巨噬细胞受到病原体相关分子模式(pathogen associated molecular pattern,PAMP)、模式识别受体和损伤相关分子模式(damage associated molecular pattern,DAMP)及游离脂肪酸(free fatty acid,FFA)等刺激,从而激活肝脏炎症通路,并且肝脏过度的脂质积累会诱导氧化应激,诸多因素促进MAFLD向不同阶段发展[6]。研究表明,巨噬细胞是MAFLD发生和进展的主要参与者[4],其可能成为治疗MAFLD的潜在治疗靶点。本文就巨噬细胞在MAFLD中的作用机制研究进行综述。
1 巨噬细胞
肝脏是人体重要的免疫器官,巨噬细胞在肝脏中的占比最大,其在肝脏免疫稳态和诸多肝病的发展中起重要作用。肝巨噬细胞主要有两种类型:KC和单核细胞衍生的巨噬细胞(monocyte-derived macrophage,MoMF)。巨噬细胞具有不同的功能表型,其主要分化为M1表型和M2表型,巨噬细胞的功能表型直接参与了MAFLD的进程。
1.1 巨噬细胞类型
1.1.1 KC KC来源于胚胎发育早期卵黄囊中产生的红骨髓祖细胞,其迁移至肝脏并驻留在肝窦中,成为肝脏固有巨噬细胞。KC主要标志物包括CD68、CD163、F4/80,清道夫受体CD163是MAFLD纤维化的独立预测因子[7-8]。KC可表达高水平的Toll样受体(toll-like receptor,TLR),TLR是肠道源性PAMP的第一个识别点,通过肝门静脉或局部DAMP到达肝脏[9]。KC是TLR依赖性炎症反应的主要介质,通过高表达TLR等受体,识别内源性及外源性信号。Wan等[10]研究表明,M1表型极化可产生肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-1(interleukin-1,IL-1)、IL-12和活性氧(reactive oxygen species,ROS),促进肝脏的炎症形成。人体内脂质、脂质代谢物和脂多糖(lipopolysaccharide,LPS)等因素会激活KC。KC一旦被激活,就会增加炎症细胞因子的表达,加剧肝细胞的坏死性炎症程度,并改变与纤维化和氧化损伤相关的基因表达,从而促进MAFLD的进展[11]。可见,MAFLD的发生发展与KC的激活及其独特的极化作用密切相关。
1.1.2 MoMF MoMF来源于骨髓造血干细胞,通过血液循环移植到肝脏。MoMF主要标志物为CCR2、S100A9,CCR2在MoMF中高度表达[8,12]。MoMF在健康肝脏中占比较少,但其在肝损伤的情况下会迅速招募[13]。募集的单核细胞分化为促炎性巨噬细胞表型,FFA、LPS分别与巨噬细胞表面的TLR4结合使巨噬细胞极化,激活核转录因子-κB(nuclearfactor-κB,NF-κB)和C-Jun氨基末端激酶(C-Jun nterminal kinase,C-JNK)炎症信号通路,诱导促炎细胞因子的分泌,如TNF-α、IL-1β、IL-6和ROS等,刺激炎症细胞向靶器官浸润从而导致肝组织炎症损伤,导致持续的炎症反应[14-16]。单核细胞实质上倾向于促炎性MoMF极化,从循环中迁移并在随后的激活之前在肝脏中积累[17]。从血液中募集的单核细胞可以填充肝巨噬细胞池,并且能与应激后激活的KC一起产生多种炎症因子,在肝脏的炎症损伤和修复的过程中发挥重要作用。
1.2 巨噬细胞功能表型
巨噬细胞根据不同的微环境信号,显示不同的功能表型,其被分为经典激活的M1表型和替代激活的M2表型巨噬细胞。M1表型巨噬细胞是促炎细胞,具有高抗原呈递能力,与炎症介质的释放、病原微生物的清除及免疫刺激等相关,其可诱导大量细胞因子的释放,如TNF、诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)、IL-1β和ROS[18],同时激活Th1细胞反应。M2表型巨噬细胞分泌抗炎细胞因子,显示出抗炎和基质降解活性,例如精氨酸酶1表达、IL-4和IL-10分泌及高水平的吞噬作用[19-20],M2表型与炎症的消退、肝胆再生、修复和组织重建等相关。肝脏损伤、肿瘤、缺氧、感染等因素会影响肝脏巨噬细胞M1表型和M2表型之间的平衡而影响MAFLD进程。
2 巨噬细胞与MAFLD的不同阶段
2.1 肝脂肪变性
肝脂肪变性主要是由于脂质在体内代谢失衡引起的,肝脂肪变性是MAFLD极其明显的病理标志,是一种异质性疾病,包括胰岛素抵抗、线粒体功能障碍和过多的脂质积累[21]。M1表型巨噬细胞响应TLR刺激,TLR介导的脂肪酸基团识别是炎症和先天免疫中脂质调节的主要机制。在KC外基质中,FFA与TLR的结合能够激活C-JNK和NF-κB通路[22]。激活的NF-κB上调黏附分子和单核细胞趋化蛋白-1(monocyte chemoattractant protein-1,MCP-1)的水平,从而招募CD11b+巨噬细胞并促进脂质合成,从而增加激活蛋白1和促炎细胞因子的转录[23],从而使肝脂肪变性。KC中积累的过量FFA会损害线粒体功能,加重脂质的积累。上述表明KC充当FFA超载,肝脏中过度累积的FFA可抑制KC吞噬活性,促进脂肪变性。
2.2 肝脏炎症
肝脏脂质代谢发生改变,导致有毒脂质中间体的形成,进而可能导致肝细胞损伤和炎症。在肝脏中,脂毒物质的积累,尤其是棕榈酸酯(palmitic,PA),促使MAFLD的发生和进展。Wang等[24]研究发现,在饮食诱导的脂肪性肝炎小鼠模型中,PA会损害巨噬细胞的自噬通量。PA对巨噬细胞的脂毒性在研究中得到证实,即蛋氨酸-胆碱缺乏症(methionine-choline deficiency,MCD)-饮食模式。研究发现从MCD饮食喂养的动物中分离出的F4/80巨噬细胞显示出核苷酸结合寡聚结构域样受体蛋白3(NOD-like receptor protein 3,NLRP3)蛋白质水平上调,PA对巨噬细胞的体外刺激增加了他们的线粒体通透性,导致线粒体DNA(mitochondrial DNA,mtDNA)的释放,并通过蛋白质增加了NLRP3炎症小体的活性与mtDNA形成复合物,从而促进肝脏炎症反应[25]。
此外,肠道菌群失调是导致MAFLD发生和进展的一个重要因素,高脂饮食或营养不良可能会触发肠道菌群质和量变化,从而增加肠道通透性和细菌产物通过门静脉到达肝脏的转运,肠道微生物群代谢输出的改变会影响巨噬细胞的极化[26]。肠道细菌、相关抗原和FFA通过门静脉向肝脏的运输会在肝细胞中产生脂毒性,由于PAMP的识别会发生炎症,并最终导致免疫细胞募集[27]。TLR主要在巨噬细胞上表达,TLR可被DAMP激活,其中TLR4对肠道细菌产物LPS有反应,是KC激活的关键。LPS能通过TLR4激活肝脏固有巨噬细胞,肝脏炎症的发生与LPS-TLR4信号传导息息相关。LPS通过TLR4信号通路与KC表面的CD14结合,随后招募T淋巴细胞、B淋巴细胞和其他白细胞,导致炎症细胞因子和趋化因子的释放,如TNF-α、IL-1β、IL-6、IL-12和γ干扰素(Interferon-γ,IFN-γ)[6]。以上结果表明,肠道通透性改变会导致包括LPS在内的细菌产物的循环水平增加,增高的内毒素水平通过TLR4活化KC,诱导TNF等表达,引起肝脏损伤。
2.3 肝纤维化和肝硬化
肝纤维化是MAFLD的终末病理表现之一,是目前慢性肝脏疾病发展为肝硬化的必经阶段。巨噬细胞在肝脏纤维化病理损伤过程中发挥重要的作用。肝巨噬细胞M1表型和浸润性单核细胞分泌促炎症细胞因子和促纤维化因子,例如转化生长因子-β(transforming growth factor beta,TGF-β)、TNF-α、IL-1b、IL-6,他们充当肝星状细胞(hepatic stellate cell,HSC)和成肌纤维细胞的激活剂,诱导HSC活化[28],从而增强HSC的促纤维化过程。脂质过氧化物水解载脂蛋白B100,加重炎症坏死,激活KC,并诱导TGF-β1。随后TGF-β信号通过细胞表面的TGF-β1受体,促进细胞核内Smad蛋白的磷酸化,导致HSC向肌纤维细胞转化,加重肝功能损害[29-30]。肝纤维化的另一特征是细胞外基质蛋白(例如胶原蛋白)的积累。当TGF-β由KC分泌时,会产生有助于肝纤维化的细胞因子和趋化因子。HSC中Ⅰ型胶原的表达在转录后受到多种刺激和途径的调控,包括TGF-β,可刺激其他基质成分,例如细胞纤维连接蛋白和蛋白聚糖[31]。这些因素,包括ROS的产生,炎症细胞因子和脂质过氧化,可激活HSC,使其分化为可靠的成纤维细胞,并有助于肝纤维化。可见,活化的KC产生TGF-β、TNF-α等因子,激活HSC,促进肝纤维化乃至肝硬化的进展。
2.4 肝癌
MAFLD极大地增加发生HCC的风险,在HCC发病过程中,巨噬细胞起关键作用。巨噬细胞首先通过诱导具有氧化应激的慢性低度炎性环境,促进HCC的发展,从而诱发DNA损伤和肝细胞死亡[32]。浸润的单核细胞对来自肿瘤微环境的刺激作出反应,并分化为与肿瘤相关的巨噬细胞(tumor associated macrophages,TAM)。TAM分泌炎症细胞因子,例如TGF-β、TNF-α和血管内皮生长因子,这些因子参与血管生成并有助于肿瘤的发生发展和转移[33]。M1表型巨噬细胞具有促炎作用,诱导TGF-β的释放,促进肿瘤的形成。在早期HCC发展过程中,M1表型巨噬细胞驱动的纤维炎症为肿瘤的发生提供了一个微环境;而在晚期HCC中,巨噬细胞转换为免疫抑制性TAM支持肿瘤进展和恶性肿瘤,肿瘤细胞和微环境之间的串扰在肿瘤的发展和转移中起重要作用[34]。由此可知,巨噬细胞可引起肝细胞的严重损害,参与了MAFLD的肝癌发展阶段。
3 MAFLD巨噬细胞相关临床诊治的前景
巨噬细胞具有可塑性和表型异质性,巨噬细胞的M1表型和M2表型极化是一个动态过程,可以在生理和病理条件下逆转。一项小鼠实验表明,M2表型巨噬细胞通过分泌精氨酸酶和抗炎因子IL-10及旁分泌方式诱导M1表型巨噬细胞凋亡;此外,M2表型巨噬细胞降低了M1表型巨噬细胞的促炎作用,减轻了炎症反应和细胞损伤[10]。因此,M1表型和M2表型巨噬细胞可能是MAFLD潜在的治疗靶点之一。他们可以促进炎症,导致肝细胞损伤并激活肝星状细胞,导致纤维化、血管生成和肿瘤发展,然而他们也刺激纤维化消退并限制MAFLD进展。肝损伤中参与MoMF募集的分子是MCP-1。研究发现,在饮食诱导的脂肪性肝炎动物模型中,阻断MCP-1-CCR2通路已被证明是抑制MoMF浸润和改善脂肪性肝炎和纤维化的有效策略[35-37]。因此,抑制单核细胞浸润或影响其极化,可成为MAFLD的一种治疗方法。MAFLD的进展与肠道微生物群的变化、细菌过度生长和肠道通透性增加有关。益生元可通过调节肠道菌群和TLR4依赖性巨噬细胞的活化,逆转肠道菌群的不利生长,减少炎症因子及脂肪生成,可预防肝脂肪变性的发生,并改善脂肪性肝炎和纤维化,从而缓解MAFLD进程[27,38]。益生元对于MAFLD的治疗具有广泛的发展前景。
4 结语
巨噬细胞在MAFLD发病的不同阶段有不同作用,不同的巨噬细胞类型和功能表型也有显著差异。近年来,诸多研究为理解巨噬细胞在MAFLD发病机制中的作用提供了新的视角。尽管多年来取得了重大进展,但对于巨噬细胞与MAFLD之间的潜在相互作用尚有待进一步研究,其还存在作用机制不明确,治疗策略存在不确定性等问题。巨噬细胞具有高度的可塑性,是潜在的治疗靶点,然而M1表型促炎,M2表型抗炎,他们的异质性也带来了巨大挑战。巨噬细胞与肠道来源的LPS之间的关系,与PAMP、FFA、PA、DAMP、TLR等之间的相互作用仍需进一步探究。彻底阐明巨噬细胞在MAFLD中的作用机制将有利于MAFLD的诊断和治疗。
[参考文献]
[1] López-Méndez I,Méndez-Maldonado K,Manzo-Francisco LA,et al. G protein-coupled receptors:Key molecules in metabolic associated fatty liver disease development [J]. Nutr Res,2021,87:70-79.
[2] Thoen RU,Longo L,Neto SC,et al. Low levels of Lysosomal Acid Lipase(LAL) activity increases necroinflammation in adult patients with biopsy-proven metabolic associated fatty liver disease [J]. Clin Res Hepatol Gastroenterol,2021,45(6):101638.
[3] Muthiah MD,Sanyal AJ. Burden of Disease due to Nonalcoholic Fatty Liver Disease [J]. Gastroenterol Clin North Am,2020,49(1):1-23.
[4] Méndez-Sánchez N,Córdova-Gallardo J,Barranco-Fragoso B,et al. Hepatic Dendritic Cells in the Development and Progression of Metabolic Steatohepatitis [J]. Front Immunol,2021,12:641240.
[5] 向阳林,代鑫,龚建平.Kupffer细胞在MAFLD发病机制中的作用[J].临床医学研究与实践,2021,6(20):195-198.
[6] Kj?覸r MB,George J,Kazankov K,et al. Current perspectives on the pathophysiology of metabolic associated fatty liver disease:are macrophages a viable target for therapy? [J]. Expert Rev Gastroenterol Hepatol,2021,15(1):51-64.
[7] Vierhout M,Ayoub A,Naiel S,et al. Monocyte and macrophage derived myofibroblasts:Is it fate? A review of the current evidence [J]. Wound Repair Regen,2021,29(4):548-562.
[8] Wang X,Rao H,Zhao J,et al. STING expression in monocyte-derived macrophages is associated with the progression of liver inflammation and fibrosis in patients with nonalcoholic fatty liver disease [J]. Lab Invest,2020,100(4):542-552.
[9] Reid DT,Reyes JL,McDonald BA,et al. Kupffer Cells Undergo Fundamental Changes during the Development of Experimental NASH and Are Critical in Initiating Liver Damage and Inflammation [J]. PLoS One,2016,11(7):e159524.
[10] Wan J,Benkdane M,Teixeira-Clerc F,et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis:a protective mechanism against alcoholic and nonalcoholic fatty liver disease [J]. Hepatology,2014,59(1):130-142.
[11] Chen J,Deng X,Liu Y,et al. Kupffer Cells in Non-alcoholic Fatty Liver Disease:Friend or Foe? [J]. Int J Biol Sci,2020,16(13):2367-2378.
[12] Sakamoto Y,Yoshio S,Doi H,et al. Serum soluble sialic acid-binding immunoglobulin-like lectin-7 concentration as an indicator of liver macrophage activation and advanced fibrosis in patients with non-alcoholic fatty liver disease [J]. Hepatol Res,2020,50(4):466-477.
[13] Kazankov K,J?覬rgensen SMD,Thomsen KL,et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis [J]. Nat Rev Gastroenterol Hepatol,2019,16(3):145-159.
[14] Martinez FO,Gordon S. The M1 and M2 paradigm of macrophage activation:time for reassessment [J]. F1000Prime Rep,2014,6:13.
[15] Dou L,Shi X,He X,et al. Macrophage Phenotype and Function in Liver Disorder [J]. Front Immunol,2019,10:3112.
[16] Yao X,Dong G,Zhu Y,et al. Leukadherin-1-Mediated Activation of CD11b Inhibits LPS-Induced Pro-inflammatory Response in Macrophages and Protects Mice Against Endotoxic Shock by Blocking LPS-TLR4 Interaction [J]. Front Immunol,2019,10:215.
[17] Mossanen JC,Krenkel O,Ergen C,et al. Chemokine(C-C motif)receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury [J]. Hepatology,2016,64(5):1667-1682.
[18] Lichtnekert J,Kawakami T,Parks WC,et al. Changes in macrophage phenotype as the immune response evolves [J]. Curr Opin Pharmacol,2013,13(4):555-564.
[19] Krenkel O,Tacke F. Liver macrophages in tissue homeostasis and disease [J]. Nat Rev Immunol,2017,17(5):306-321.
[20] Baeck C,Wei X,Bartneck M,et al. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2(monocyte chemoattractant protein 1)accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice [J]. Hepatology,2014,59(3):1060-1072.
[21] Chen S,Guo H,Xie M,et al. Neutrophil:An emerging player in the occurrence and progression of metabolic associated fatty liver disease [J]. Int Immunopharmacol,2021,97:107609.
[22] Han R,Zhang F,Wan C,et al. Effect of perfluorooctane sulphonate-induced Kupffer cell activation on hepatocyte proliferation through the NF-κB/TNF-α/IL-6-dependent pathway [J]. Chemosphere,2018,200:283-294.
[23] Luo W,Xu Q,Wang Q,et al. Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease [J]. Sci Rep,2017,7(1):44612.
[24] Wang X,de Carvalho Ribeiro M,Iracheta Vellve A,et al. Macrophage-Specific Hypoxia-Inducible Factor-1α Contributes to Impaired Autophagic Flux in Nonalcoholic Steatohepatitis [J]. Hepatology,2019,69(2):545-563.
[25] Pan J,Ou Z,Cai C,et al. Fatty acid activates NLRP3 inflammasomes in mouse Kupffer cells through mitochondrial DNA release [J]. Cell Immunol,2018,332:111-120.
[26] Campo L,Eiseler S,Apfel T,et al. Fatty Liver Disease and Gut Microbiota:A Comprehensive Update [J]. J Clin Transl Hepatol,2018,7(1):1-5.
[27] Hernandez-Ceballos W,Cordova-Gallardo J,Mendez-Sanchez N. Gut Microbiota in Metabolic-associated Fatty Liver Disease and in Other Chronic Metabolic Diseases [J]. J Clin Transl Hepatol,2021,9(2):227-238.
[28] Tsuchida T,Friedman SL. Mechanisms of hepatic stellate cell activation [J]. Nat Rev Gastroenterol Hepatol,2017, 14(7):397-411.
[29] Kiagiadaki F,Kampa M,Voumvouraki A,et al. Activin-A causes Hepatic stellate cell activation via the induction of TNFα and TGFβ in Kupffer cells [J]. Biochim Biophys Acta Mol Basis Dis,2018,1864(3):891-899.
[30] Schon HT,Weiskirchen R. Immunomodulatory effects of transforming growth factor-beta in the liver [J]. Hepatobiliary Surg Nutr,2014,3(6):386-406.
[31] Quinn SR,Mangan NE,Caffrey BE,et al. The Role of Ets2 Transcription Factor in the Induction of Micro-RNA-155(miR-155)by Lipopolysaccharide and Its Targeting by Interleukin-10 [J]. J Biol Chem,2014,289(7):4316-4325.
[32] Lin Z,Xu S,Wang H,et al. Prognostic value of DNA repair based stratification of hepatocellular carcinoma [J]. Sci Rep,2016,6(1):25999.
[33] Alharthi J,Latchoumanin O,George J,et al. Macrophages in metabolic associated fatty liver disease [J]. World J Gastroenterol,2020,26(16):1861-1878.
[34] Bansal R,Mandrekar P,Mohanty SK,et al. Editorial:Macrophages in Liver Disease [J]. Front Immunol,2020, 11:1754.
[35] Baeck C,Wehr A,Karlmark KR,et al. Pharmacological inhibition of the chemokine CCL2(MCP-1)diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury [J]. Gut,2012,61(3):416-426.
[36] Krenkel O,Puengel T,Govaere O,et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis [J]. Hepatology,2018,67(4):1270-1283.
[37] Lefebvre E,Moyle G,Reshef R,et al. Antifibrotic Effects of the Dual CCR2/CCR5 Antagonist Cenicriviroc in Animal Models of Liver and Kidney Fibrosis [J]. PLoS One,2016,11(6):e158156.
[38] Chen H,Huang H,Li Y,et al. Therapeutic advances in non-alcoholic fatty liver disease:A microbiota-centered view [J]. World J Gastroenterol,2020,26(16):1901-1911.
|
|
|
|