|
|
Research progress on the relationship between NOX/ROS-NF-κB siginaling pathway and atherosclerosis |
WEI Jiaming1 WANG Ziyan1 LIU Ting2 WANG Jianguo2 GUO Zhihua2 |
1.The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China;
2.College of Chinese Medicine, Hunan University of Chinese Medicine, Hunan Province, Changsha 410208, China |
|
|
Abstract Atherosclerosis (AS) is a complex disease involving many pathways. The NOX/ROS-NF-κB siginaling pathway plays an important role in the formation of AS, but the mechanism needs to be further clarified. This paper mainly summarizes the NOX/ROS-NF-κB signaling pathway, and elaborates the progress of NOX/ROS-NF-κB signaling pathway in the prevention and treatment of AS, so as to provide reference for follow-up research.
|
|
|
|
|
[1] Saigusa R,Winkels H,Ley K. T cell subsets and functions in atherosclerosis [J]. Nat Rev Cardiol,2020,17(7):387-401.
[2] 安冬青,吴宗贵.动脉粥样硬化中西医结合诊疗专家共识[J].中国全科医学,2017,20(5):507-511.
[3] 刘言薇,刘中勇.健脾化浊调脂方通过NOX/ROS-NF-κB通路对ox-LDL诱导的血管平滑肌细胞增殖抑制作用研究[J].中华中医药杂志,2018,33(12):5588-5591.
[4] 刘言薇,刘中勇.调脂Ⅰ号通过NOX/ROS-NF-κB通路对巨噬细胞氧化应激损伤的保护作用[J].时珍国医国药,2019,30(1):29-32.
[5] 陈昌国,李易,王建飞,等.健脾化浊方通过NOX4/ROS/NF-κB通路调节动脉粥样硬化大鼠主动脉炎症及氧化应激反应的研究[J].中药药理与临床,2019,35(6):134-139.
[6] 黄琦,刘中勇,刘言薇.健脾化浊调脂方调控NOX/ROS/NF-κB通路对动脉粥样硬化大耳兔的抗氧化应激损伤作用研究[J].时珍国医国药,2020,31(9):2071-2073.
[7] Lin S,Li X,Zhang J,et al. Omentin-1: Protective impact on ischemic stroke via ameliorating atherosclerosis [J]. Clin Chim Acta,2021,517(6):31-40.
[8] Guo S,Chen X. The human Nox4:gene,structure,physiological function and pathological significance [J]. J Drug Target,2015,23(10):888-896.
[9] Ahmadian E,Eftekhari A,Babaei H,et al. Anti-Cancer Effects of Citalopram on Hepatocellular Carcinoma Cells Occur via Cytochrome C Release and the Activation of NF-κB [J]. Anticancer Agents Med Chem,2017,17(11):1570-1577.
[10] Pires BRB,Silva RCMC,Ferreira GM,et al. NF-kappaB:Two Sides of the Same Coin [J]. Genes(Basel),2018,9(1):24.
[11] Mitchell JP,Carmody RJ. NF-κB and the Transcriptional Control of Inflammation [J]. Int Rev Cell Mol Biol,2018,335:41-84.
[12] Sun SC. The non-canonical NF-κB pathway in immunity and inflammation [J]. Nat Rev Immunol,2017,17(9):545-558.
[13] 张文涛,陈云宪,唐良秋.NF-κB信号通路在冠状动脉粥样硬化性心脏病中的作用[J].国际心血管病杂志,2021, 48(1):28-31.
[14] 王柏森.绿原酸通过抑制TLR4/MAPK/NFκB通路激活自噬抑制炎症和氧化应激[D].吉林:吉林大学,2021.
[15] Fukai T,Ushio-Fukai M. Cross-Talk between NADPH Oxidase and Mitochondria:Role in ROS Signaling and Angiogenesis [J]. Cells,2020,9(8):1849.
[16] Li W,Xu X,Dong D,et al. Up-regulation of thioredoxin system by puerarin inhibits lipid uptake in macrophages [J]. Free Radic Biol Med,2021,162(1):542-554.
[17] Li Y,Zhao Q,Cao Y,et al. Probucol decreases homocysteine-stimulated CRP production in rat aortic smooth muscle cells via regulating HO-1/NADPH oxidase/ROS/p38 pathway [J]. Acta Biochim Biophys Sin(Shanghai),2021,53(2):212-219.
[18] 杨鑫,胡炎伟.氧化低密度脂蛋白在动脉粥样硬化性心血管疾病诊断中的作用[J].中华检验医学杂志,2021, 44(7):563-568.
[19] Kattoor AJ,Kanuri SH,Mehta JL. Role of Ox-LDL and LOX-1 in Atherogenesis [J]. Curr Med Chem,2019,26(9):1693-1700.
[20] Luo M,Tian R,Lu N. Quercetin Inhibited Endothelial Dysfunction and Atherosclerosis in Apolipoprotein E-Deficient Mice: Critical Roles for NADPH Oxidase and Heme Oxygenase-1 [J]. J Agric Food Chem,2020,68(39):10875-10883.
[21] Pejenaute ?譧,Cortés A,Marqués J,et al. NADPH Oxidase Overactivity Underlies Telomere Shortening in Human Atherosclerosis [J]. Int J Mol Sci,2020,21(4):1434.
[22] 胡文静.NOX/ROS参与PECAM-1调节血管内皮细胞功能对动脉粥样硬化的作用[D].济南:济南大学,2019.
[23] Poznyak AV,Grechko AV,Orekhova VA,et al. NADPH Oxidases and Their Role in Atherosclerosis [J]. Biomedicines,2020,8(7):206.
[24] Sobey CG,Judkins CP,Rivera J,et al. NOX1 deficiency in apolipoprotein E-knockout mice is associated with elevated plasma lipids and enhanced atherosclerosis [J]. Free Radic Res,2015,49(2):186-198.
[25] Ouerd S,Idris-Khodja N,Trindade M,et al. Endothelium-restricted endothelin-1 overexpression in type 1 diabetes worsens atherosclerosis and immune cell infiltration via NOX1 [J]. Cardiovasc Res,2021,117(4):1144-1153.
[26] Wu JH,Zhang L,Nepliouev I,et al. Drebrin attenuates atherosclerosis by limiting smooth muscle cell transdifferentiation [J]. Cardiovasc Res,2021,118(3),772-784.
[27] Aviram M,Rosenblat M,Etzioni A,et al. Activation of NADPH oxidase required for macrophagemediated oxidation of low-density lipoprotein [J]. Metabolism,1996,45:1069-1079.
[28] Xue S,Tang H,Zhao G,et al. C-C motif ligand 8 promotes atherosclerosis via NADPH oxidase 2/reactive oxygen species-induced endothelial permeability increase [J]. Free Radic Biol Med,2021,167:181-192.
[29] Tian Q,Leung FP,Chen FM,et al. Butyrate protects endothelial function through PPARδ/miR-181b signaling [J]. Pharmacol Res,2021,169:105681.
[30] Yu W,Xiao L,Que Y,et al. Smooth muscle NADPH oxidase 4 promotes angiotensin Ⅱ-induced aortic aneurysm and atherosclerosis by regulating osteopontin [J]. Biochim Biophys Acta Mol Basis Dis,2020,1866(12):165912.
[31] Lozhkin A,Vendrov AE,Pan H,et al. NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis [J]. J Mol Cell Cardiol,2017,102(1):10-21.
[32] Kim J,Yoo JY,Suh JM,et al. The flagellin-TLR5-Nox4 axis promotes the migration of smooth muscle cells in atherosclerosis [J]. Exp Mol Med,2019,51(7):1-13.
[33] Yu W,Li S,Wu H,et al. Endothelial Nox4 dysfunction aggravates atherosclerosis by inducing endoplasmic reticulum stress and soluble epoxide hydrolase [J]. Free Radic Biol Med,2021,164:44-57.
[34] Touyz RM,Anagnostopoulou A,Camargo LL,et al. Vascular biology of superoxide-generating NADPH oxidase 5-implications in hypertension and cardiovascular disease [J]. Antioxid Redox Signal,2019,30(7):1027-1040.
[35] Bryk D,Olejarz W,Zapolska-Downar D. The role of oxidative stress and NADPH oxidase in the pathogenesis of atherosclerosis [J]. Postepy Hig Med Dosw(Online),2017,71:57-68.
[36] 薛万华,杨婷.氧化应激与自噬在动脉粥样硬化发生发展中的研究进展[J].分子影像学杂志,2019,42(1):95-98.
[37] Chen SY,Chen YZ,Lee YJ,et al. Maternal hypercholesterolemia exacerbates atherosclerosis lesions in female offspring through potentiating macrophage polarization toward an inflammatory M1 phenotype [J]. J Nutr Biochem,2021,90:108575.
[38] Edgar L,Akbar N,Braithwaite AT,et al. Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis [J]. Circulation,2021,144(12):961-982.
[39] Jiao L,Jiang M,Liu J,et al. Nuclear factor-kappa B activation inhibits proliferation and promotes apoptosis of vascular smooth muscle cells [J]. Vascular,2018,26(6):634-640.
[40] 刘峰涛,于紫英.血管平滑肌细胞与动脉粥样硬化斑块稳定性的研究进展[J].中国心血管杂志,2021,26(3):299-302.
[41] Kong P,Yu Y,Wang L,et al. circ-Sirt1 controls NF-κB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells [J]. Nucleic Acids Res,2019,47(7):3580-3593.
[42] 张明军.动脉粥样硬化中NF-κB通路与炎症、凋亡及自噬的关联性研究[D].乌鲁木齐:新疆医科大学,2020.
[43] 赵嫦清,王志明,杨丽霞.核因子-κB信号通路与自噬在动脉粥样硬化发生发展中的相互调节作用[J].心脑血管病防治,2019,19(4):355-357.
[44] 蒋长荣,马小峰.SATB1基因沉默介导NF-κB通路对冠心病小鼠主动脉内皮细胞炎症损伤的保护作用[J].东南大学学报(医学版),2020,39(1):35-40.
[45] 轩艳,蔡宇,王啸轩,等.牙龈卟啉单胞菌感染对载脂蛋白e基因敲除小鼠动脉粥样硬化的影响[J].北京大学学报(医学版),2020,52(4):743-749.
[46] Lu S,Luo Y,Zhou P,et al. Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-κB,p38,and JNK MAPK pathways [J]. J Ginseng Res,2019,43(1):95-104.
[47] 冯伟,魏海燕,师艳艳.基于TLR4/NF-κB途径探究左西孟旦调控巨噬细胞极化减轻动脉粥样硬化的作用[J].药物评价研究,2021,44(12):2578-2586.
[48] 李藤藤.ICA通过调控miR-672-5p/AKT3/NF-κB信号通路抑制ox-LDL诱导的RAW264.7炎症反应[D].吉林:吉林大学,2021.
[49] Tayyeb JZ,Popeijus HE,Mensink RP,et al. Short-Chain Fatty Acids (Except Hexanoic Acid) Lower NF-kB Transactivation,Which Rescues Inflammation-Induced Decreased Apolipoprotein A-I Transcription in HepG2 Cells [J]. Int J Mol Sci,2020,21(14):5088. |
|
|
|