|
|
Research on glioma microenvironment |
LI Xun1 AI Wenbing2 |
1.Medical College of China Three Gorges University, Hubei Province, Yichang 443000, China;
2.Yiling Hospital of Yichang City, Hubei Province, Yichang 443000, China |
|
|
Abstract The glioma is the most common primary intracranial malignancy in adults. Current treatments include surgery, radiotherapy, and oral chemotherapy drug temozolomide. These treatments have a certain cure rate, but there is still the possibility of recurrence. The main reason is that tumor cells can survive and rebuild tumors during the treatment. Therefore, it is essential for the treatment of tumors to know the molecular mechanism that regulates the activity of tumor cells. Glioma stem cells (GSC) tolerance to conventional radiotherapy and chemotherapy may be one of the causes of glioma recurrence. The tumor microenvironment in which GSC located is related to the development of GSC, which also provides a new idea for the treatment of gliomas. This article focuses on the research progress of GSC-related tumor microenvironment and the treatment of gliomas through targeted microenvironment.
|
|
|
|
|
[1] 任东妮,王震,刘楠,等.胶质瘤干细胞表型维持机制研究进展[J].转化医学电子杂志,2017,4(12):57-63.
[2] Roos A,Ding Z,Loftus JC,et al. Molecular and microenvironmental determinants of glioma stem-like cell survival and invasion [J]. Front Oncol,2017,7:120.
[3] 袁凡恩,陈谦学.胶质瘤干细胞的研究进展[J].中国临床神经外科杂志,2016,21(8):508-511.
[4] Calabrese C,Poppleton H,Kocak M,et al. A perivascular niche for brain tumor stem cells [J]. Cancer Cell,2007,11(1):69-82.
[5] Ping YF,Yao XH,Jiang JY,et al. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling [J]. J Pathol,2011,224(3):344-354.
[6] Yadav VN,Zamler D,Baker GJ,et al. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis:a genetic knockdown study [J].Oncotarget,2016,7(50):83 701-83 719.
[7] Liu D,Martin V,Fueyo J,et al. Tie2/TEK modulates the interaction of glioma and brain tumor stem cells with endothelial cells and promotes an invasive phenotype [J]. Oncotarget,2010,1(8):700-709.
[8] Burgett ME,Lathia JD,Roth P,et al. Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells [J]. Oncotarget,2016,7(28):43 852-43 867.
[9] Zhu TS,Costello MA,Talsma CE,et al. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells [J]. Cancer Res,2011,71(18):6061-6072.
[10] Martínez-González A,Calvo GF,Ayuso JM,et al. Hypoxia in gliomas: opening therapeutical opportunities using a mathematicalbased approach [J]. Adv Exp Med Biol,2016,(936):11-29.
[11] Uribe D,Torres ?魣,Rocha JD,et al. Multidrug resistance in glioblastoma stem-like cells:role of the hypoxic microenvironment and adenosine signaling [J]. Mol Aspects Med,2017,(55):140-151.
[12] Mccord AM,Jamal M,Shankavarum UT,et al. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro [J]. Mol Cancer Res,2009,7(4):489-497.
[13] Méndez O,Zavadil J,Esencay M,et al. Knock down of HIF-1α in glioma cells reduces migration in vitro,and invasion in vivo,and impairs their ability to form tumor spheres [J]. Mol Cancer,2010,9(1):133.
[14] Qiang L,Wu T,Zhang HW,et al. HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway [J]. Cell Death Differ,2012,19(2):284-294.
[15] 刘晨,杨志军,徐如祥,等.低氧环境对胶质瘤细胞增殖的影响[J].中华神经外科疾病研究杂志,2018,17(1):18-22.
[16] Galan-Moya EM,Guelte AL,Lima-Fernandes E,et al. Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway [J]. Embo Rep,2011,12(5):470-476.
[17] Bao S,Wu Q,Sathornsumetee S,et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor [J]. Cancer Res,2006,66(16):7843-7848.
[18] Roitbak T,Li L,Cunningham LA. Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1alpha-regulated VEGF signaling [J]. Cereb Blood Flow Metab,2008, 28(9):1530-1542.
[19] Castro BA,Flanigan P,Jahangiri A,et al. Macrophage migration inhibitory factor downregulation:a novel mechanism of resistance to anti-angiogenic therapy [J]. Oncogene,2017,36(26):3749-3759.
[20] Li D,Xie K,Zhang L,et al. Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects [J]. Cancer Lett,2016,377(2):164-173.
[21] Xu F,Cui W,Zhao Z,et al. Targeting tumor microenvironment:effects of chinese herbal formulae on macrophage-mediated lung cancer in mice [J]. Evid Based Complement Alternat Med,2017:7187168.
[22] Li Q,Xia S,Fang H,et al. VEGF treatment promotes bone marrow-derived CXCR4+ mesenchymal stromal stem cell differentiation into vessel endothelial cells [J]. Exp Ther Med,2017,13(2):449-454.
[23] Huang WJ,Chen WW,Xia Z. Glioblastoma multiforme: effect of hypoxia and hypoxia inducible factors on therapeutic approaches [J]. Oncol Lett,2016,12(4):2283-2288.
[24] Li Z,Bao S,Wu Q,et al.Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells [J]. Cancer Cell,2009,15(6):501-513.
[25] Seidel S,Garvalov BK,Wirta V,et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha [J]. Brain,2010,133(Pt 4):983-995.
[26] Mccord A,Jamal MU,Lang F,et al. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro [J]. Mol Cancer Res,2009,7(4):489-497. |
|
|
|