|
|
Study on quality evaluation of Verbena officinalis L. based on ultra high performance liquid chromatography fingerprint and chemical pattern recognition |
ZHANG Zhipeng DENG Lihong WANG Shoufu HUANG Mengting LI Ling WEI Mei#br# |
Guangdong Yifang Pharmaceutical Co., Ltd., Guangdong Province, Foshan 528244, China
|
|
|
Abstract Objective To study the fingerprints differences of root, main stem, lateral branch, leaf, and flower of Verbena officinalis L. Methods Eleven batches of Verbena officinalis L. from different producing areas were collected. The fingerprints of medicinal material, root, main stem, lateral branch, leaf, and flower of Verbena officinalis L. were determined by ultra high performance liquid chromatography. Similarity evaluation, cluster analysis, principal component analysis, and partial least square discriminant analysis were used to analyze the chemical pattern recognition of fingerprints of different parts. Results The ultra high performance liquid chromatography fingerprints of medicinal material, root, main stem, lateral branch, leaf, and flower of Verbena officinalis L. were established, and 22, 14, 20, 20, 21, 22 common characteristic peaks were confirmed, respectively, and three components (5-hydroxyl verbenalin, verbenalin, and verbascoside) were identified. The higher similarity between medicinal material and its lateral branch, but lower similarity for root. Heat maps showed that the contents of chemical constituents in different parts were different, which mainly enriched in flower. Clustering analysis showed that the consistency between herbs and lateral branches was high. Combined with principal component analysis and partial least square discriminant analysis, 5-hydroxyl verbenalin was an important indexes of the formation of different parts of the difference. Conclusion The quality of Verbena officinalis L. can be improved by harvesting at flowering stage and removing root for medicinal application, which provided experimental reference for removing root for medicinal application.
|
|
|
|
|
[1] 国家药典委员会.中华人民共和国药典[M].一部.北京:中国医药科技出版社,2020:53-54.
[2] 孙玉明,王月月,蔡蕊,等.高效液相色谱-光电二极管阵列-高分辨质谱联用鉴定马鞭草提取物中的化学成分[J].色谱,2017,35(9):987-994.
[3] 马金华,杨勇勋.马鞭草的化学成分研究[J].西南民族大学学报(自然科学版),2019,45(6):579-582.
[4] 陈改敏,张建业,张向沛,等.马鞭草黄酮类化学成分的研究[J].中药材,2006,29(7):677-679.
[5] 杨再波.顶空萃取-气相色谱-质谱法分析马鞭草的挥发油组分[J].理化检验(化学分册),2008,44(6):514-516.
[6] 何俊,樊瑜琪,杨丰文,等.马鞭草化学成分及药理活性研究进展[J].天津中医药,2020,37(11):1205-1212.
[7] 任非,段坤峰,付颖,等.马鞭草镇咳有效部位化学成分的研究[J].中国医院药学杂志,2013,33(6):445-449.
[8] 中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1982:15.
[9] 段坤峰,袁志芳,郑旭光,等.马鞭草HPLC-PDA指纹图谱研究[J].中草药,2009,40(12):1984-1988.
[10] 段坤峰,卢树杰,陈钟,等.RP-HPLC法同时测定马鞭草中木犀草素、芹菜素和山柰酚[J].药物分析杂志,2010, 30(6):995-998.
[11] 王苗苗,刘真,迟宗良,等.马鞭草高效液相指纹图谱研究[J].中华中医药学刊,2013,31(8):1800-1803.
[12] 陈改敏.HPLC测定不同地区马鞭草中毛蕊花苷的含量[J].光明中医,2015,30(11):2498-2499.
[13] 刘素香,白雪,刘毅,等.马鞭草HPLC指纹图谱建立及指标性成分的测定[J].中草药,2016,47(12):2069-2073.
[14] 陈学松.马鞭草HPLC-CAD指纹图谱及主要成分的测定[J].中草药,2017,48(10):2007-2011.
[15] 李瑞雪,吴飞,张继全,等.含量测定结合HPLC指纹图谱用于香加皮质量评价[J].中国医药导报,2017,14(22):33-46.
[16] 陈亮元,程轩轩,唐晓敏,等.指纹图谱、模式识别结合一测多评法在广金钱草质量评价中的应用研究[J].中国中药杂志,2018,43(16):3323-3328.
[17] 俞洁东,曾海松,吴革林,等.脉络通颗粒HPLC指纹图谱研究[J].中国医药导报,2019,16(4):39-42.
[18] 李洋,陈健,张越,等.基于指纹图谱结合化学模式识别及多成分含量测定的白芍药材质量评价研究[J].中草药,2022,53(1):231-237.
[19] 李妍,何文媛,王康宇,等.基于HPLC多指标成分测定及指纹图谱多模式识别方法的北细辛质量分析[J].中草药,2022,53(1):238-243.
[20] 李晶峰,杨海南,郅慧,等.不同产地槐角HPLC指纹图谱建立及化学模式识别研究[J].中草药,2021,52(21):6677-6682.
[21] 孟哲,王丽君,黄洋,等.中药三七不同药用部位的指纹图谱及模式识别研究[J].中国药学杂志,2020,55(7):504-509.
[22] 李燕珍,鲁云,陈丹燕,等.基于UPLC指纹图谱的厚朴药材去粗皮质量评价研究[J].中国医药导报,2020,17(19):27-30.
[23] 张志鹏,梁丽金,徐杰,等.巴戟天及根皮与木心UPLC特征指纹图谱与化学模式识别方法研究[J].中草药,2020, 51(13):3554-3560.
[24] 洪婉敏,孙冬梅,纪玉华,等.仙鹤草不同药用部位HPLC指纹图谱及化学模式识别研究[J].现代中药研究与实践,2020,34(6):46-51.
[25] 谢明晏,张正,黄瑶,等.大蓟不同药用部位的HPLC特征图谱与化学模式识别研究[J].中国药房,2020,31(7):820-825.
[26] 刘雅琳,苗晋鑫,田硕,等.马鞭草化学成分及药理作用研究进展[J].河南中医,2021,41(2):294-299. |
|
|
|