|
|
Study on the mechanism of Kushen Wumei Decoction against hepatitis B virus in HepG 2.2.15 cell model based on network pharmacology and metabolomics |
ZHENG Rui GUO Peng LIU Yu KONG Wei CHEN Yan |
Department of Pharmacy, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China |
|
|
Abstract Objective To explore the anti-hepatitis B virus (HBV) mechanism of Kushen Wumei Decoction on HepG 2.2.15 cell model by using network pharmacology and metabonomics technology. Methods Enzyme linked immunosorbent assay was used to evaluate the effect of Kushen Wumei Decoction on HepG 2.2.15 cell model. Metabolomics analysis method of UHPLC-LTQ-Orbitrap-MS was used, combined with principal component analysis method and orthogonal-partial least squares multiplicative analysis method were used for multivariate statistical analysis. In addition, the network pharmacology technology was used to predict the potential metabolic pathways of Kushen Wumei Decoction against HBV. Combining the metabolic pathways obtained from the two parts, the anti-HBV mechanism of Kushen Wumei Decoction was explored. Results Compared with blank group, the survival rates of 1250 μg/ml and 2500 μg/ml groups were lower (P < 0.05); Compared with blank group, 2500 μg/ml group had lower HBVDNA content (P < 0.05); 40 metabolites with significant differences between groups were screened, which mainly affected the biosynthesis of phenylalanine, tyrosine, and tryptophan, phenylalanine metabolism, sphinolipid metabolism, arginine and proline metabolism; the potential therapeutic targets of the candidate active ingredients of Kushen Wumei Decoction were 115, and the top five targets in degree value were protein kinase B, human epidermal growth factor receptor, proto-oncogene tyrosine protein kinase Src, tumor necrosis factor, and vascular endothelial growth factor A. A total of 679 genes were identified by gene ontology enrichment analysis, including 2162 biological processes, 56 cell components, and 133 molecular functions; Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that the top 20 P-value pathways mainly included PI3K-Akt, hepatitis B, Kaposi’s sarcoma associated herpes virus infection, and other signaling pathways. Conclusion Kushen Wumei Decoction can resist HBV. Metabolomics and network pharmacology found that the mechanism of its action may be related to the regulation of sphingolipid metabolism pathway, the biosynthesis of phenylalanine, tyrosine, and tryptophan, and phenylalanine metabolism pathway, and PI3K-Akt signaling pathway, which provides a basis for the mechanism of anti-HBV.
|
|
|
|
|
[1] 王贵强,王福生,庄辉,等.慢性乙型肝炎防治指南(2019年版)[J].中国病毒病杂志,2020,10(1):1-25.
[2] WHO. Hepatitis B fact sheets [EB/OL]. (2020-07-27)[2020-09-01]. https://www. who. int/news-room/fact-sheets/detail/hepatitis-b.
[3] WHO. Global hepatitis report,2017 [EB/OL].(2017-04-01)[2020-09-01]. https://www.who.int/hepatitis/publications/global-hepatitis -report2017-executive-summary/en/.
[4] The Polaris Observatory Collaborators. Global prevalence,treatment,and prevention of hepatitis B virus infection in 2016:a modelling study [J]. Lancet Gastroenterol Hepatol,2018,3(6):383-403.
[5] 郭朋,刘艳玲.苦参乌梅汤抗乙肝病毒60例临床研究报告[J].中国现代药物应用,2009(6):219.
[6] 郭朋,刘艳玲.苦参乌梅汤影响乙型肝炎病毒转基因小鼠乙型肝炎表面抗原表达的研究[J].中国医药,2011,6(2):129-130.
[7] 朱振红.苦参乌梅汤体内抑制转基因小鼠S抗原和体外抑制HepG2.2.15细胞HBVDNA的实验研究[D].北京:中国中医科学院,2014.
[8] 马昆.苦参乌梅汤对HepG2.2.15细胞部分细胞因子表达水平的影响及其抗HBV机制探讨[D].北京:中国中医科学院,2016.
[9] 董培良,李慧,韩华.中药网络药理学的应用与思考[J].中国实验方剂学杂志,2020,17(26):204-211.
[10] 谢静,李云鹃,缪兴龙,等.基于代谢组学技术的中药复方药效物质基础与作用机制研究[J].药物评价研究,2020,7(43):1439-1445.
[11] 张云龙,刘妍,徐评议,等.基于调控脑肠轴探索解毒化瘀汤改善阿尔茨海默病小鼠认知功能的机制[J].中国药理学与毒理学杂志,2019,33(9):42.
[12] 柴煊,孟雅坤,柏兆方,等.基于生物靶标网络分析的山豆根抗乙肝病毒的作用机制初步研究[J].药学学报,2018, 3(53):396-402.
[13] 杨斌,芮轶群,王欢,等.基于网络药理学预测桃仁-红花药对治疗心绞痛的分子机制[J].中医药临床杂志,2020, 5(32):882-889.
[14] Bar-Yishay I,Shaul Y,Shlomai A. Hepatocyte metabolic signalling pathways and regulation of hepatitis B virus expression [J]. Liver Int,2011,31(3):282-290.
[15] 李洪德.宿主细胞对乙肝病毒复制的代谢应答研究[D].北京:中国科学院研究生院(武汉物理与数学研究所),2014.
[16] 黄庆霞.乙肝病毒感染与复制对宿主磷脂代谢的影响研究[D].北京:中国科学院大学(中国科学院武汉物理与数学研究所),2019.
[17] Eun-Sook P,Hwa LJ,Hong JH,et al. Phosphatidylcholine Alteration Identified Using MALDI Imaging MS in HBV-Infected Mouse Livers and Virus-Mediated Regeneration Defects [J]. PLoS One,2014,9(8):e103995.
[18] Qu TL,Li ZY,Zhao SJ,et al. A metabonomic analysis reveals novel regulatory mechanism of Huangqi injection on leucopenia mice [J]. Immunopharmacol Immunotoxicol,2016,38(2):113-123.
[19] Tian SS,Huang PL,Gu Y,et al. Systems biology analysis of the effect and mechanism of Qi-jing-sheng-bai granule on leucopenia in mice [J]. Front Pharmacol,2019, 10:408. DOI:10.3389/fphar.2019.00408.
[20] Fernstrom JD,Fernstrom MH. Tyrosine,phenylalanine,and catecholamine synthesis and function in the brain [J]. J Nutr,2007,137(6 Suppl 1):1539S-1547S.
[21] Li SJ,Lin H,Qu C,et al. Urine and plasma metabonomics coupled with UHPLC-QTOF/MS and multivariate data analysis on potential biomarkers in anemia and hematinic effects of herb pair Gui-Hong [J]. J Ethnopharmacol,2015,170:175-183. DOI:10.1016/j.jep.2015.05.019.
[22] Martini M,De Santis MC,Braccini L,et al. PI3K/AKT signaling pathway and cancer:an updated review [J]. Annals of medicine,2014,46(6):372-383.
[23] 刘阳,魏俊,肖贝,等.乙肝病毒X蛋白结合蛋白可能通过PI3K/Akt信号通路影响肝癌细胞的增殖和迁移[J].中国免疫学杂志,2020,7(36):837-841.
[24] 寇小妮,解新科,郝明霞,等.大黄素介导IRS-2/PI3K/Akt通路干预大鼠非酒精性脂肪性肝炎的实验研究[J].疑难病杂志,2020,19(1):80-84.
[25] 吴锐旋,石协桐,许金微,等.糖尿病与乙型肝炎病毒感染的关系分析[J].数理医药学杂志,2019,32(1):48-49.
[26] 于军,王晓丹.分析2型糖尿病与乙型肝炎病毒感染的关系[J].糖尿病新世界,2021,24(4):3.
[27] 高乔,张润涛,刘聪,等.系统生物学技术用于中药肝毒性机制的研究进展[J].中国医药科学,2021,11(24):53-57.
[28] 杨妮,徐建良,盛国光,等.代谢组学在中药抗肝纤维化研究中的进展[J].中国医药导报,2020,17(29):33-36.
[29] 张改君,苗静,郭丽颖,等.多组学联用在中药作用机制研究中的应用[J].中草药,2021,52(10):3112-3120. |
|
|
|