|
|
Analysis on worldwide status of basic researches of artificial intelligence assisted biomarker research based on bibliometric #br# |
WANG Tingting CHEN Juan ZHANG Ting OUYANG Zhaolian |
1.Institute of Medical Information & Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China |
|
|
Abstract Objective To analysis the worldwide status and basic of researches on artificial intelligence (AI)-assisted in biomarker research. Methods Literature on AI-assisted biomarker research was retrieved from Web of Science database, and the global research status was analyzed by bibliometrics. Results From 1970 to July 2020, a total of 10 281 papers on research have been published, with a compound growth rate of 21.36% in the past decade. The United States leads other countries in the number of papers (4331 papers), total cited times (114 774 times) and highly cited papers (80 papers), and 16 institutions were among the top 25 in the world with the most international cooperation. The number of papers published in the UK and Germany (1125 papers and 992 papers respectively) and the total citation frequency (28 588 and 26 601 respectively) were among the top in the world, with a lot of international cooperation. The number of Chinese papers (2250 papers) was second only to that of the United States, but the number of cited papers per paper (11.61 times) and highly cited papers per paper (35 papers) was low. Only three institutions were among the top in the world, and the international cooperation was not strong enough. Conclusion In the past decade, basic researces of AI-assisted biomarker has developed rapidly in this field. The quantity of scientific papers in China ranked second, however the influence is relatively weak.
|
|
|
|
|
[1] 范月蕾,陈大明,于建荣.生物标志物研究进展与应用趋势[J].生命的化学,2013,33(3):344-351.
[2] Kim SJ,Moon GJ,Bang OY. Biomarkers for Stroke [J]. Journal of Stroke,2013,15(1):27-37.
[3] 刘熙称,王艺颖,童曼曼,等.肝细胞癌早期诊断中的生物标志物[J].临床肝胆病杂志,2021,37(1):176-179.
[4] 李爱玲,宋健.生物标志物分类及其在临床医学中的应用[J].中国药理学与毒理学杂志,2015,29(1):7-13.
[5] 刘睿轩,朱全红.生物标志物检测方法的研究进展[J].中国现代应用药学,2020,37(3):378-384.
[6] 黄敏.整合生物标志物体系的建立及在疾病诊断和药物疗效评价中的应用[D].上海:华东理工大学,2012.
[7] 黄远,王爱民,杨正杰,等.骨性关节炎软骨代谢标志物的研究概况[J].当代医学,2021,27(4):192-194.
[8] 车津晶.生物标志物在生物药临床研究中的应用及生物分析策略[J].中国临床药理学与治疗学,2020,25(1):22-31.
[9] 赵倩倩,尤红俊,肖丹,等.基于基因表达综合数据库芯片的类风湿关节炎生物标志物的筛选与生物信息学分析[J].西安交通大学学报:医学版,2020,41(4):544-552.
[10] 苏令涛.基于多组学数据的癌症生物标志物识别算法研究[D].吉林:吉林大学,2019.
[11] 董华,马岚.基于机器学习的三阴乳腺癌预测模型[J].云南大学学报:自然科学版,2017,39(S1):111-115.
[12] 蔡建旭.人工智能在医疗行业中的应用前景[J].科技与金融,2018(12):48-50.
[13] 刘利,田攀文.生物标志物在肺癌筛查中的研究进展[J].华西医学,2020,35(1):78-83.
[14] Brooks JD. Translational genomics:The challenge of developing cancer biomarkers [J]. Genome Res,2012,22(2):183-187.
[15] 张业先.基于多组学整合分析的癌症生物标志物识别算法研究[D].吉林:吉林大学,2020.
[16] 李伟霞,唐进法,曹英杰,等.基于非靶向代谢组学的肝功轻度异常患者血清易感生物标志物筛查[J].中国中药杂志,2019,44(9):1921-1926.
[17] Rundle A,Ahsan H,Vineis P. Better cancer biomarker discovery through better study design [J]. Eur J Clin Invest,2012,42(12):1350-1359.
[18] Mamoshina P,Vieira A,Putin E,et al. Applications of Deep Learning in Biomedicine [J]. Mol Pharm,2016,13(5):1445-1454.
[19] 张飞龙.一种基于深度神经网络算法的亚临床差异级别代谢组学数据处理方法[D].北京:北京中医药大学,2020.
[20] 胡可慧,陈校云,宋杨杨,等.美国、欧盟、英国、日本和中国医疗人工智能相关政策分析[J].中国数字医学,2019,14(7):34-38.
[21] 舒影岚,陈艳萍,吉臻宇,等.健康医疗大数据研究进展[J].中国医学装备,2019,16(1):143-147.
[22] 王晓菲.欧盟发布《人工智能白皮书:通往卓越与信任的欧洲之路》[J].科技中国,2020(9):98-101.
[23] 陈娟,张婷,卢岩,等.人工智能用于医学影像学基础研究态势[J].中国医学影像技术,2021,37(2):298-302.
[24] 李首骏.我国人工智能领域政策文本的量化研究[D].蚌埠:安徽财经大学,2020.
[25] 王海旭,陈艳萍,赵凯.中国人工智能医疗产业发展的现状及国际经验借鉴[J].卫生经济研究,2020,37(9):9-11.
[26] 李艳,杨国庆,双娇月.人工智能在医疗应用中的新进展[J].中国医药导报,2021,18(13):43-46.
[27] 司锐,李文秀,苏俊武.人工智能在医学领域的应用进展[J].中国医药,2021,16(6):957-960. |
|
|
|