|
|
Effect of Apatinib on apoptosis of triple negative breast cancer cells#br# |
ZHANG Yifan1 TANG Xijun1 WANG Xinshuai2 |
1.Department of Clinical Laboratory Diagnosis, Zhuhai Integrated Chinese and Western Medicine Hospital, Guangdong Province, Zhuhai 519000, China; 2.Department of Oncology, the First Affiliated Hospital, Henan University of Science and Technology, Henan Province, Luoyang 471003, China |
|
|
Abstract Objective To study the effect of Apatinib on apoptosis of triple negative breast cancer cells and its mechanism. Methods Triple negative breast cancer cell line MDA-MB-468 was cultured in vitro, and PBS group, 1, 5, 10, and 20 μg/ml Apatinib groups were set, and treated with PBS, 1, 5, 10, and 20 μg/ml Apatinib, respectively. MTT assay, flow cytometry, scratch assay and Transwell assay were used to detect the effects of Apatinib on cell proliferation, apoptosis, cycle, migration and invasion, and Western blot was used to detect the expression of apoptosis-related proteins. Results The cell survival rate of apatinib groups was lower than that of PBS group, and the difference was statistically significant (P < 0.05). The apoptosis rate of 1 and 10 μg/ml Apatinib group was higher than that of PBS group, the difference was statistically significant (P < 0.05). There was no significant difference in cell cycle distribution between PBS group and 1 and 10 μg/ml Apatinib group (P > 0.05). The migration movement area of 1 and 10 μg/ml Apatinib group was lower than that of PBS group, and the difference was statistically significant (P < 0.05). The number of cell invasion in 1 and 10 μg/ml Apatinib group was lower than that in PBS group, the difference was statistically significant (P < 0.05). The expression levels of P65 and Bcl-2 in 5 and 10 μg/ml Apatinib groups were lower than those in PBS group, and the differences were statistically significant (P < 0.05). Conclusion Apatinib can inhibit the proliferation and induces apoptosis of MDA-MB-468 breast cancer cells. At the meantime, the p65/Bcl-2 signaling pathways are also suppressed.
|
|
|
|
|
[1] 王靖.这可能是三阴性乳腺癌最全面的介绍[J].抗癌之窗,2019(2):58-59.
[2] Chen W,Zheng R,Baade PD,et al. Cancer statistics in China,2015 [J]. CA Cancer J Clin,2016,66(2):115-132.
[3] 郑莹,吴春晓,张敏璐.乳腺癌在中国的流行状况和疾病特征[J].中国癌症杂志,2013,23(8):561-569.
[4] 王立志,邢晓静.三阴性乳腺癌的治疗研究进展[J].中国临床新医学,2020,13(12):1283-1286.
[5] Ferrara N,Gerber HP,Lecouter J. The biology of VEGF and its receptors [J]. Nat Med,2003,9(6):669-676.
[6] 袁茵,宫颢,李永文,等.阿帕替尼对肺癌细胞侵袭迁移的影响及其作用机制[J].中国肺癌杂志,2019,22(5):264-270.
[7] Zhang H. Apatinib for molecular targeted therapy in tumor [J]. Drug Des Devel Ther,2015,9:6075-6081.
[8] 高纯一,胡天惠.抗血管生成药物阿帕替尼改善肿瘤免疫微环境的研究进展[J].赣南医学院学报,2021,41(5):437-443.
[9] 赵灵颖,张文青,李存玺,等.阿帕替尼抗肿瘤作用机制研究进展[J].肿瘤防治研究,2021,48(1):7-11.
[10] 刘超,张洪兵,李永文,等.阿帕替尼联合CCI-779体外抑制小细胞肺癌细胞株NCI-H446的增殖和迁移[J].中国肺癌杂志,2020,23(4):216-222.
[12] 张改华,杜文英.乳腺癌151例分子亚型临床与病理特点[J].陕西医学杂志,2014,7:909-911.
[13] 陆春燕,吕凤菊,陈浩华,等.浸润性乳腺癌分子亚型患者的临床特征及预后研究[J].实用医学杂志,2012, 28(5):765-767.
[14] 韩颜泽,赵金鹏,孙岩岩.三阴型乳腺癌的化学治疗和靶向治疗进展[J].现代生物医学进展,2014,14(22): 4397-4400.
[15] 胡江辉,向剑文.三阴性乳腺癌的临床病理特征及预后研究[J].当代医学,2021,27(13):54-56.
[16] 吴雨洁,刘敏,高静东.三阴性乳腺癌分子靶向治疗研究进展[J].中南医学科学杂志,2019,47(2):217-220.
[17] 曹建.细胞周期蛋白依赖性激酶4/6抑制剂治疗晚期雌激素受体阳性/人类表皮生长因子受体2阴性乳腺癌的研究进展[J].肿瘤研究与临床,2018,30(8):562-565.
[18] 陈旻.甲磺酸阿帕替尼联合化疗治疗晚期乳腺癌的临床疗效及安全性[J].临床合理用药杂志,2021,14(14):67-69.
[19] 唐小飞,董志,傅洁民,等.化疗联合分子靶向药物治疗三阴性乳腺癌的研究进展[J].中国药房,2013,24(10):941-944.
[20] 彭秋霞,范娟,韩云炜.阿帕替尼治疗恶性肿瘤的研究进展[J].西南军医,2017,19(02):176-179.
[21] 张娣.甲磺酸阿帕替尼治疗三线及三线以上晚期非小细胞肺癌的临床观察[D].济南:山东大学,2020.
[22] 黄世芬,燕冰雪,夏云霞,等.阿帕替尼联合化疗治疗晚期乳腺癌的临床研究[J].兰州大学学报:医学版,2021, 47(1):52-58.
[23] 房尚萍,李海源,丁磊,等.通过调节NF-κB通路中的IκBα抑制乳腺癌的研究进展[J].锦州医科大学学报,2021,42(1):104-108.
[24] 黄晶,潘宜云,钟金平,等.NF-κB/COX-2信号通路在宫颈癌中的作用及机制研究[J].中国当代医药,2020, 27(20):4-7,12.
[25] 田明月,彭程云,丁小芬,等.NF-κB信号通路在骨性关节炎软骨损伤机制中的研究进展[J].现代中西医结合杂志,2021,30(10):1131-1137.
[26] 毕建强,黄如敬,胡秀茹,等.Satraplatin联合放疗对鼻咽癌裸鼠STAT3及NF-κB表达的影响[J].临床和实验医学杂志,2020,313(9):925-928.
[27] Tyagi M,Patro BS. Salinomycin reduces growth,proliferation and metastasis of cisplatin resistant breast cancer cells via NF-kB deregulation [J]. Toxicol In Vitro,2019, 60:125-133. |
|
|
|