|
|
Toxicity and multipotent differentiation influence of hydroxyapatite/multiwalled carbon nanotube composites on mesenchymal stem cells |
SONG Guodong* GUO Xiaoshuang* ZONG Xianlei ZHAO Jingyi LAI Chenzhi JIN Xiaolei |
Department No.16, Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing 100144, China |
|
|
Abstract Objective To develop hydroxyapatite functionalized multi-walled carbon nanotubes (HA-MWCNTs), and assess the toxicity of HA-MWCNTs on rat′s BMSCs and its influence on the multipotent differentiation of bone marrow derived mesenchymal stem cells (BMSCs), thereby to provide experimental evidence for its utility in tissue engineering. Methods HA-MWCNTs were synthesized. Transmission electron microscope (TEM), X-ray diffraction (XRD) were used to observe the microstructure; BMSCs were obtained from female SD rats of 4 weeks old which weighted between 100 to 150 grams. After cultured and expanded to the third passage, cells were co-cultured with HA-MWCNTs and unfunctionalized MWCNTs (MWCNTs). MTT and live-dead cell assay were used to appraise the toxicity of MWCNTs on BMSCs. BMSCs were then induced and differentiated into adipocytic and osteoblastic cells and were used to assess the influence of MWCNTs on BMSCs′ multipotent differentiation. Results Compared to control group, BMSCs in MWCNTs group were significantly inhibited (P < 0.05), while in HA-MWCNTs group, BMSCs were slightly inhibited, with no statistical difference (P > 0.05), and the ratio of dead cells was less in HA-MWCNTs group. The mRNA level of osteogenesis (Cbfal/Runx2, BSP and OCN) was increased (P < 0.05) and the mRNA of adipogenesis (aP2 and LPL) was decreased (P < 0.05) in HA-MWCNTs group. Conclusion Compared with MWCNTs, HA-MWCNTs had slight influence on cell proliferation, trivial toxicity and favorable biocompatibility of BMSCs, meanwhile it could promote osteoblastic and inhibit adipocytic differentiation of BMSCs. HA-MWCNTs may supply a novel platform for applications of scaffold in bone tissue engineering.
|
|
|
|
|
[1] Damien CJ,Parsons JR. Bone graft and bone graft substitutes:a review of current technology and applications [J]. J Appl Biomater,1991,2(3):187-208.
[2] Pommer B,Georgopoulos A,Dvorak G,et al. Decontamination of autogenous bone grafts:systematic literature review and evidence-based proposal of a protocol [J]. Quintessence Int,2014,45(2):145-150.
[3] Miller LE,Block JE. Safety and effectiveness of bone allografts in anterior cervical discectomy and fusion surgery [J]. Spine (Phila Pa 1976),2011,36(24):2045-2050.
[4] Ramesh N,Moratti SC,Dias GJ. Hydroxyapatite-polymer biocomposites for bone regeneration:A review of current trends [J]. J Biomed Mater Res B Appl Biomater,2017,6(26):1-12.
[5] Li D,Liu H,Zhao J,et al. Porous lithium-doped hydroxyapatite scaffold seeded with hypoxia- preconditioned bone-marrow mesenchymal stem cells for bone-tissue regeneration [J]. Biomed Mater,2018. (ahead of print). DOI:10.1088/1748-605X/aac627
[6] Meskinfam M,Bertoldi S,Albanese N,et al. Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration [J]. Mater Sci Eng C Mater Biol Appl,2018,82:130-140.
[7] Li H,Song X,Li B,et al. Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application [J]. Mater Sci Eng C Mater Biol Appl,2017,77:1078-1087.
[8] Sajjd MI,Jamshaid U,Jamshaid T,et al. Carbon nanotubes from synthesis to in vivo biomedical applications [J]. Int J Pharm,2016,501(1-2):278-299.
[9] Ema M,Gamo M,Honda K. A review of toxicity studies of single-walled carbon nanotubes in laboratory animals [J]. Regul Toxicol Pharmacol,2016,74:42-63.
[10] Nagaraju K,Reddy R,Reddy N. A review on protein functionalized carbon nanotubes [J]. J Appl Biomater Funct Mater,2015,13(4):e301-e312.
[11] Eldridge BN,Xing F,Fahrenholtz CD,et al. Evaluation of multiwalled carbon nanotube cytotoxicity in cultures of human brain microvascular endothelial cells grown on plastic or basement membrane [J]. Toxicol In Vitro,2017, 41:223-231.
[12] Ovefusi A,Olanipekun O,Neelgund GM,et al. Hydroxyapatite grafted carbon nanotubes and graphene nanosheets:promising bone implant materials [J]. Spectrochim Acta A Mol Biomol Spectrosc,2014,132:410-416.
[13] Nicoletti A,Torricecelli P,Bigi A,et al. Incorporation of nanostructured hydroxyapatite and poly(N-isopropylacrylamide) in demineralized bone matrix enhances osteoblast and human mesenchymal stem cell activity [J]. Biointerphases,2015,10(4):41001.
[14] Abden MJ,Afroze JD,Alam MS,et al. Pressureless sintering and mechanical properties of hydroxyapatite/functionalized multi-walled carbon nanotube composite [J]. Mater Sci Eng C Mater Biol Appl,2016,1(67):418-424.
[15] Xiao Y,Gong T,Zhou S. The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite [J]. Biomaterials,2010,31(19):5182-5190.
[16] Jing Z,Wu Y,Su W,et al. Carbon Nanotube Reinforced Collagen/Hydroxyapatite Scaffolds Improve Bone Tissue Formation In Vitro and In Vivo [J]. Ann Biomed Eng,2017,45(9):2075-2078.
[17] Khan AS,Hussain AN,Sidra L,et al. Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application [J]. Mater Sci Eng C Mater Biol Appl,2017,80:387-396.
[18] Wang X,Li G,Guo J,et al. Hybrid composites of mesenchymal stem cell sheets,hydroxyapatite,and platelet-rich fibrin granules for bone regeneration in a rabbit calvarial critical-size defect model [J]. Exp Ther Med,2017, 13(5):1891-1899.
[19] Raucci MG,Alvarez-Perez M,Giugliano D,et al. Properties of carbon nanotube-dispersed Sr-hydroxyapatite injectable material for bone defects [J]. Regen Biomater,2016,3(1):13-23.
[20] Flores-Cedillo ML,Alvarado-Estrada KN,Pozos-Guillén AJ,et al. Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration [J]. J Mater Sci Mater Med,2016, 27(2):35.
[21] Raucci MG,Alvarez-Perez M,Giugliano D,et al. Properties of carbon nanotube-dispersed Sr-hydroxyapatite injectable material for bone defects [J]. Regen Biomater,2016,3(1):13-23. |
|
|
|