|
|
Effect of Dexmedetomidine pretreatment on HMGB1 mRNA expression in LPS-stimulated astrocytes |
CHEN Xiaoshi1 XIAO Yingying1 ZHOU Jiao2 ZENG Wenqiang1 YANG Jinguo1 |
1.Department of Anesthesiology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Hubei Province, Shiyan 442008, China;
2.Department of Urology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Hubei Province, Shiyan 442008, China |
|
|
Abstract Objective To investigate the effect of Dexmedetomidine pretreatment on the high mobility group box 1 (HMGB1) mRNA expression in lipopolysaccharide (LPS)-stimulated astrocytes (AS), and to explore its relationship with α7 subtype of nicotinic acetylcholine receptor (α7nAChR). Methods The new-born 1-2 day SD rats were selected, and the AS of cerebral cortex was isolated and cultivated. The cells were inoculated on cell culture plates, and they were divided into blank control group, LPS group, DEX-pretreatment group, α-bungatotoxin (α-BGT, which was α7nAChR antagonist) group and α-BGT-pretreatment group. The immunocytochemical technique was used to determine the expression of AS specific marker glial fibrillary acidic protein (GFAP). Methyl thiazolyl tetrazolium (MTT) was to used detect cytoactive. Real-time quantitative PCR was used to detect the mRNA expression levels of HMGB1. Results The purity of the 3rd generation of AS reached above 95%. The expression of AS HMGB1 mRNA was up-regulated, which had statistically significant differences compared with those of blank control group (P < 0.01). Compared with LPS group, the expression of HMGB1 mRNA in DEX-pretreatment group was decreased significantly (P < 0.01). Compared with DEX-pretreatment group, α-BGT-pretreatment had significant effects of reversing DEX-pretreatment (P < 0.01), while single application of α-BGT for AS had no significant effects on the expression of HMGB1 gene (P > 0.05). Conclusion Dexmedetomidine pretreatment can reduce the expression of HMGB1, the DEX-pretreatment effect disappears after cutting off α7nAChR, which indicates that the anti-inflammatory action of DEX-pretreatment may be related to activating α7nAChR.
|
|
|
|
|
[1] Ransohoff RM. How neuroinflammation contributes to neurodegeneration [J]. Science,2016,353(6301):777-783.
[2] Gallowitsch-Puerta M,Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway [J]. Life Sci,2007,80(24/25):2325-2329.
[3] Wang H,Yu M,Ochani M,et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation [J]. Nature,2003,421(6921):384-388.
[4] Wang H,Liao H,Ochani M,et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis [J]. Nat Med,2004,10(11):1216-1221.
[5] Xiang H,Hu B,Li Z,et al. Dexmedetomidine Controls Systemic Cytokine Levels through the Cholinergic Anti-inflammatory Pathway [J]. Inflammation,2014,37(5):1763-1770.
[6] McCarthy KD,Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue [J]. J Cell Biol,1980,85(3):890-902.
[7] Carson MJ,Thrash JC,Walter B. The cellular response in neuroinflammation:The role of leukocytes,microglia and astrocytes in neuronal death and survival [J]. Clin Neurosci Res,2006,6(5):237-245.
[8] Gao HM,Zhou H,Zhang F,et al. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration [J]. J Neurosci,2011,31(3):1081-1092.
[9] Lee JH,Yoon EJ,Seo J,et al. Hypothermia inhibits the propagation of acute ischemic injury by inhibiting HMGB1 [J]. Mol Brain,2016,9(1):81.
[10] Xiong XX,Gu LJ,Shen J,et al. Probenecid Protects Against Transient Focal Cerebral Ischemic Injury by Inhibiting HMGB1 Release and Attenuating AQP4 Expression in Mice [J]. Neurochem Res,2014,39(1):216-224.
[11] Hayakawa K,Pham LD,Katusic ZS,et al. Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery [J]. Proc Natl Acad Sci U S A,2012,109(19):7505-7510.
[12] Kim SW,Lim CM,Kim JB,et al. Extracellular HMGB1 Released by NMDA Treatment Confers Neuronal Apoptosis via RAGE-p38 MAPK/ERK Signaling Pathway [J]. Neurotox Res,2011,20(2):159-169.
[13] Sasaki T,Liu K,Agari T,et al. Anti-high mobility group box 1 antibody exerts neuroprotection in a rat model of Parkinson's disease [J]. Exp Neurol,2016,275(Pt 1):220-231.
[14] Garwood CJ,Pooler AM,Atherton J,et al. Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture [J]. Cell Death Dis,2011, 2(6):e167.
[15] Fujita K,Motoki K,agawa K,et al. HMGB1,a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS,is a potential therapeutic target for Alzheimer's disease [J]. Sci Rep,2016,6:31895.
[16] Enokido Y,Yoshitake A,Ito H,et al. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain [J]. Biochem Biophys Res Commun,2008, 376(1):128-133.
[17] Farina C,Aloisi F,Meinl E. Astrocytes are active players in cerebral innate immunity [J]. Trends Immunol,2007, 28(3):138-145.
[18] Gu J,Sun P,Zhao H,et al. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice [J]. Crit Care,2011,15(3):R153.
[19] Zhang JJ,Peng K,Zhang J,et al. Dexmedetomidine preconditioning may attenuate myocardial ischemia/reperfusion injury by down-regulating the HMGB1-TLR4-MyD88-NF-кB signaling pathway [J]. PLoS One,2017, 12(2):e0172006.
[20] Cui WY,Li MD. Nicotinic modulation of innate immune pathways via α7 nicotinic acetylcholine receptor [J]. J Neuroimmune Pharmacol,2010,5(4):479-488.
[21] Tsoyi K,Jang HJ,Kim JW,et al. Stimulation of alpha7 nicotinic acetylcholine receptor by nicotine attenuates inflammatory response in macrophages and improves survival in experimental model of sepsis through heme oxygenase-1 induction [J]. Antioxid Redox Signal,2011,14(11):2057-2070.
[22] Kim TH,Kim SJ,Lee SM. Stimulation of the α7 nicotinic acetylcholine receptor protects against sepsis by inhibiting Toll-like receptor via phosphoinositide 3-kinase activation [J]. J Infect Dis,2014,209(10):1668-1677.
[23] Rong H,Zhao Z,Feng J,et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats [J]. Brain Behav Immun,2017,64:195-207.
[24] Zhu YJ,Peng K,Meng XW,et al. Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model [J]. Brain Res,2016,1644:1-8.
[25] Xiang H,Hu B,Li Z,et al. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway [J]. Inflammation,2014,37(5):1763-1770.
[26] Hinojosa AE,García-Bueno B,Leza JC,et al. Regulation of CCL2/MCP-1 production in astrocytes by desipramine and atomoxetine:involvement of α2 adrenergic receptors [J]. Brain Res Bull,2011,86(5/6):326-333.
[27] Beijnum JR,Buurman WA,Griffioen AW. Convergence and amplification of toll-like receptor(TLR)and receptor for advanced glycation end products(RAGE)signaling pathways via high mobility group B1(HMGB1)[J]. Angiogenesis,2008,11(1):91-99. |
|
|
|