|
|
Predictive value of preoperative multimodal ultrasound for postoperative recurrence risk of breast cancer |
JI Donglu |
Department of Ultrasound Medicine, Mudan People’s Hospital of Heze City, Shandong Province, Heze 274000, China |
|
|
Abstract Objective To analyze the correlation between preoperative multimodal ultrasound features and recurrence risk of breast cancer and to explore its value. Methods A total of 286 cases (286 lesions) with breast cancer patients who underwent surgery in Mudan People’s Hospital of Heze City, Shandong Province from January 2020 to January 2023 were selected. They were divided into training set (200 cases) and validation set (86 cases) according to the ratio of 7∶3. The training set was divided into high risk group (68 cases) and a low-medium risk group (132 cases) according to the Guidelines and Norms for Diagnosis and Treatment of Breast Cancer of the Chinese Anti-Cancer Association 2021 Edition. The factors influencing the risk of breast cancer recurrence after surgery were analyzed and the prediction model of nomogram was established. The performance of the model was evaluated by receiver operating characteristic curve and calibration curve. Results There was no significant difference in general data between the training set and verification set (P>0.05). TNM stage, pathological grade, lymph node metastasis, tumor diameter, boundary, hyperechoic halo, internal echo, blood flow grade, and elastic score were significantly different between high risk group and low-medium risk group (P<0.05). Tumor diameter (OR=1.428), boundary (OR=3.425), hyperechoic halo (OR=3.300), internal echo (OR=9.631), and blood flow grade (OR=1.725) were independent risk factors for postoperative recurrence of breast cancer patients (P<0.05). Based on this, a nomogram prediction model was constructed. The area under the curve (AUC) in the training set was 0.832, and the AUC in verification set was 0.800, which showed good performance. Calibration curve consistency was high. Conclusion It is of high practical value to construct a nomogram model for predicting the recurrence risk of breast cancer based on preoperative multimodal ultrasound.
|
|
|
|
|
[1] 张雪,董晓平,管雅喆,等.女性乳腺癌流行病学趋势及危险因素研究进展[J].肿瘤防治研究,2021,48(1):87-92. [2] 赫捷,陈万青,李霓,等.中国女性乳腺癌筛查与早诊早治指南(2021)[J].中国肿瘤,2021,30(3):161-191. [3] 赵洪猛,曹旭晨.乳腺癌肿瘤内异质性的驱动因素及临床研究进展[J].中国肿瘤临床,2022,49(15):797-800. [4] 马天怡,毛艳,王海波.28基因检测在早期乳腺癌中应用的现状与展望[J].中国肿瘤外科杂志,2022,14(6):621- 625. [5] Mercado CL.BI-RADS update [J]. Radiol Clin North Am,2014,52(3):481-487. [6] 桑田,张海俊,曹玉文,等.Logistic回归分析乳腺癌常规超声征象与腋窝淋巴结转移的关系[J].中国医学影像技术,2021,37(8):1158-1162. [7] 马燕,李晶,任卫东,等.应变力超声弹性成像预测乳腺癌患者新辅助化疗后病理完全缓解[J].中国介入影像与治疗学,2016,13(7):416-420. [8] 中国抗癌协会乳腺癌专业委员会.中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J].中国癌症杂志,2021,31(10):954-1040. [9] 汪敏,黄敏凤,池俊,等.人表皮生长因子受体2低表达乳腺癌病理检测及其异质性研究进展[J].肿瘤学杂志,2023,29(5):420-424. [10] 商久妍,贾珂琪,郭启涛,等.乳腺癌HER-2表达异质性的研究进展及临床意义[J].临床与实验病理学杂志,2023,39(3):339-342. [11] 霍斌亮,祝旭龙,田有伏,等.her2、ki67、EGFR表达与乳腺癌生物学行为的关系及其预测复发转移的ROC分析[J].现代医学,2022,50(10):1248-1255. [12] 曹春莉,李军,曹玉文,等.乳腺癌常规超声特征和剪切波弹性参数与其分子亚型的关系[J].中国医学影像学杂志,2021,29(8):801-806. [13] 王福霞,张茜,孙楠,等.多模态超声在非肿块型乳腺病变中的诊断价值[J].中国超声医学杂志,2023,39(6):642-646. [14] 许多,王振宇,郑慧玲,等.超声剪切波弹性成像联合血管形成-血流指数鉴别诊断老年乳腺肿瘤良恶性的评估价值[J].中国老年学杂志,2023,43(10):2346-2349. [15] 王虎霞,龙胜潭,宋张骏,等.超声引导定位技术对乳腺肿瘤的诊断价值[J].中国临床研究,2022,35(9):1227- 1232. [16] 鲁京慧,张宏艳,王亚娟,等.五种人工智能技术在基层乳腺癌超声筛查中的应用比较[J].中国医药科学,2022, 12(7):163-166,191. [17] 路珠,孙健玮.超声弹性成像在乳腺癌诊断中的应用现状[J].中国当代医药,2022,29(34):38-42. [18] 马宁,杨艳芳,王世霞,等.三阴性特殊类型乳腺癌患者的临床病理特征及预后[J].肿瘤,2019,39(3):196-203. [19] 宋竹清,全舒萍,朱宁,等.个体化预测乳腺癌患者术后局部复发风险模型的建立与验证[J].实用癌症杂志,2021,36(8):1347-1351. [20] 李良平.乳腺癌乳房全切术后局部区域复发和远处转移的相关危险因素[J].中国老年学杂志,2018,38(1):132-134. [21] 郑章增,郭满,相泓冰.乳腺癌病灶的超声特点与保乳根治术预后的相关性[J].实用癌症杂志,2022,37(1):114- 116. [22] 吴昊,冯佩明,张可新,等.乳腺浸润性导管癌超声高回声晕征与多个免疫组化因子表达的相关性及其预后意义[J].现代医用影像学,2022,31(10):1933-1936. [23] Huang Z,Chen L,Wang Y,et al. Molecular markers,path- ology,and ultrasound features of invasive breast cancer [J].Clinical Imaging,2021,79:85-93. [24] 李英.不同分子亚型乳腺癌患者超声表现及病理学特征的对比研究[J].临床超声医学杂志,2023,25(2):131- 136. [25] 杨建美,王芳,王秀云,等.血清SF、VEGF联合CEA检测在乳腺癌诊断、复发转移预测中的价值[J].分子诊断与治疗杂志,2023,15(5):801-804. [26] 何小芳,周敏,熊朝月,等.乳腺癌超声征象及其术后复发的危险因素分析[J].东南国防医药,2022,24(3):274- 277. [27] 何惠珍,叶洁仪,何艳萍,等.乳腺癌改良根治术后胸壁复发结节的超声图像特征及预测模型构建[J].临床超声医学杂志,2023,25(2):101-104. [28] 淦凤萍,肖雪花,胡美娟.人工智能超声对乳腺癌早期诊断及预后评估的价值分析[J].癌症进展,2022,20(14): 1480-1482,1486. |
|
|
|