炎症因子及其相关信号通路在脊髓损伤调控机制中的研究进展
宋洁菲1 周雨昕1 张宇1 吴承杰1,2 马勇1,2 郭杨1,2
1.南京中医药大学第一临床医学院,江苏南京 210023;
2.南京中医药大学骨伤修复与重建新技术实验室,江苏南京 210023
Research progress of inflammatory factors and their related signaling pathways in the regulation of spinal cord injury#br#
SONG Jiefei1 ZHOU Yuxin1 ZHANG Yu1 WU Chengjie1,2 MA Yong1,2 GUO Yang1,2
1.The First Medical College, Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing 210023, China;
2.New Technology Laboratory of Bone Injury Repair and Reconstruction, Nanjing University of Chinese Medicine, Jiangsu Province, Nanjing 210023, China
摘要 脊髓损伤(SCI)是一种严重的中枢神经系统损伤性疾病,继发性损伤是SCI预后不良的重要原因,其中炎症反应是主要的继发性损伤之一。大量文献显示,炎症因子及其相关信号通路如核因子(NF)-κB信号通路、JAK/STAT信号通路、MAPK/ERK信号通路等共同调控SCI后炎症反应,在SCI发生发展的过程中具有关键的作用。本综述根据炎症因子作用的不同将其分为促炎、抑炎因子,并结合相关信号通路,重点介绍促炎因子白细胞介素6(IL-6)、肿瘤坏死因子α等和抑炎因子IL-4、IL-10等在SCI中的作用,以便相关领域研究者广泛深入地了解SCI后炎症反应的分子机制,并在此基础上寻找更优的生物学治疗方法。
关键词 :
脊髓损伤 ,
炎症因子 ,
白细胞介素 ,
肿瘤坏死因子
Abstract :Spinal cord injury (SCI) is a serious central nervous system injury. Secondary injury is an important cause of poor prognosis in SCI, and inflammation is one of the main secondary injury. A lot of literatures have shown that inflammation cytokines and related signaling pathways, such as nuclear factor (NF)-κB, JAK/STAT and MAPK/ERK, regulate the inflammtion after SCI. They play a key role in the development of SCI. In this review, inflammation cytokines are classified into proinflammatory and anti-inflammatory factors according to their effects. This review focuses on the key proinflammatory factors interleukin 6 (IL-6), tumor necrosis factor, and anti-inflammatory factors IL-4, IL-10 and reveals their roles in the process of SCI, so that researchers in related fields can understand the molecular mechanism of inflammation after SCI widely and deeply. Based on this, they may find better biological methods for the treatment of SCI.
Key words :
Spinal cord injury
Inflammtion cytokine
Interleukin
Tumor necrosis factor
基金资助: 国家自然科学基金青年基金项目(81704100);
南京中医药大学自然科学基金青年项目(NZY81704100);
南京中医药大学大学生创新创业训练计划项目(202010315 YC001)。
通讯作者:
郭杨(1985-),男,医学博士,副教授;研究方向:慢性筋骨病中西医结合诊疗研究。
引用本文:
宋洁菲1 周雨昕1 张宇1 吴承杰1,2 马勇1,2 郭杨1,2. 炎症因子及其相关信号通路在脊髓损伤调控机制中的研究进展[J]. 中国医药导报, 2021, 18(32): 38-41.
SONG Jiefei1 ZHOU Yuxin1 ZHANG Yu1 WU Chengjie1,2 MA Yong1,2 GUO Yang1,2. Research progress of inflammatory factors and their related signaling pathways in the regulation of spinal cord injury#br#. 中国医药导报, 2021, 18(32): 38-41.
链接本文:
https://www.yiyaodaobao.com.cn/CN/ 或 https://www.yiyaodaobao.com.cn/CN/Y2021/V18/I32/38
[1] 祁健,张俊江,孟庆溪,等.脊髓损伤的病理变化及治疗进展[J].现代生物医学进展,2017,17(21):4179-4183.
[2] 曾日祥,马勇,赖玉灵.急性脊髓损伤患者外周血hs-CRP、TNF-α、IL-6和IL-10的动态表达及临床意义[J].河北医药,2016,38(10):1509-1511.
[3] 李柯柯,宗少晖.脊髓损伤中的免疫炎性细胞因子[J].中国组织工程研究,2015,19(53):8646.
[4] Becher B,Spath S,Goverman J. Cytokine networks in neuroinflammation [J]. Nat Rev Immunol,2017,17(1):49-59.
[5] Jia H,Ma H,Li Z,et al. Downregulation of LncRNA TUG1 Inhibited TLR4 Signaling Pathway-Mediated Inflammatory Damage After Spinal Cord Ischemia Reperfusion in Rats via Suppressing TRIL Expression [J]. J Neuropathol Exp Neurol,2019,78(3):268-282.
[6] Chen J,Wang Z,Zheng Z,et al. Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-κB-dependent neuroinflammation to improve functional recovery after spinal cord injury [J]. Cell Death Dis,2017,8(10):e3090.
[7] Tang R,Botchway B,Meng Y,et al. The Inhibition of Inflammatory Signaling Pathway by Secretory Leukocyte Protease Inhibitor can Improve Spinal Cord Injury [J]. Cell Mol Neurobiol,2020,40(7):1067-1073.
[8] Tanaka T,Narazaki M,Kishimoto T. Interleukin (IL-6) Immunotherapy [J]. Cold Spring Harb Perspect Biol,2018, 10(8):a028456.
[9] Yamauchi K,Osuka K,Takayasu M,et al. Activation of JAK/STAT signalling in neurons following spinal cord injury in mice [J]. J Neurochem,2006,96(4):1060-1070.
[10] Yuan X,Wu Q,Wang P,et al. Intraspinal administration of interleukin-7 promotes neuronal apoptosis and limits functional recovery through JAK/STAT5 pathway following spinal cord injury [J]. Biochem Biophys Res Commun,2019,514(3):1023-1029.
[11] Zhou YQ,Liu Z,Liu ZH,et al. Interleukin-6:an emerging regulator of pathological pain [J]. J Neuroinflammation,2016,13(1):141.
[12] Madaro L,Passafaro M,Sala D,et al. Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis [J]. Nat Cell Biol,2018,20(8):917-927.
[13] Sun L,Li M,Ma X,et al. Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner [J]. J Neuroinflammation,2017,14(1):231.
[14] Kosmopoulos M,Christofides A,Drekolias D,et al. Critical Role of IL-8 Targeting in Gliomas [J]. Curr Med Chem,2018,25(17):1954-1967.
[15] Leister I,Haider T,Mattiassich G,et al. Biomarkers in Traumatic Spinal Cord Injury-Technical and Clinical Considerations:A Systematic Review [J]. Neurorehabil Neural Repair,2020,34(2):95-110.
[16] Palomino DC,Marti LC. Chemokines and immunity [J]. Einstein (Sao Paulo),2015,13(3):469-473.
[17] Kany S,Vollrath JT,Relja B. Cytokines in Inflammatory Disease [J]. Int J Mol Sci,2019,20(23):6008.
[18] Zelová H,Ho?觢ek J. TNF-α signalling and inflammation:interactions between old acquaintances [J]. Inflamm Res,2013,62(7):641-651.
[19] Idriss HT,Naismith JH. TNF alpha and the TNF receptor superfamily:structure-function relationship(s) [J]. Microsc Res Tech,2000,50(3):184-195.
[20] Jorge A,Taylor T,Agarwal N,et al. Current Agents and Related Therapeutic Targets for Inflammation After Acute Traumatic Spinal Cord Injury [J]. World Neurosurg,2019, 132:138-147.
[21] Grebe A,Hoss F,Latz E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis [J]. Circ Res,2018,122(12):1722-1740.
[22] Mendiola AS,Cardona AE. The IL-1β phenomena in neuroinflammatory diseases [J]. J Neural Transm (Vienna),2018,125(5):781-795.
[23] Malik A,Kanneganti TD. Inflammasome activation and assembly at a glance [J]. J Cell Sci,2017,130(23):3955-3963.
[24] Kelley N,Jeltema D,Duan Y,et al. The NLRP3 Inflammasome:An Overview of Mechanisms of Activation and Regulation [J]. Int J Mol Sci,2019,20(13):3328.
[25] Kwiecien JM,Dabrowski W,D?諭browska-Bouta B,et al. Prolonged inflammation leads to ongoing damage after spinal cord injury [J]. PLoS One,2020,15(3):e226584.
[26] Xuan W,Qu Q,Zheng B,et al. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines [J]. J Leukoc Biol,2015,97(1):61-69.
[27] Gadani SP,Cronk C,Norris GT,et al. IL-4 in the brain:a cytokine to remember [J]. J Immunol,2012,189(9):4213-4219.
[28] Gour N,Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease [J]. Cytokine,2015,75(1):68-78.
[29] Lima R,Monteiro S,Lopes JP,et al. Systemic Interleukin-4 Administration after Spinal Cord Injury Modulates Inflammation and Promotes Neuroprotection [J]. Pharmaceuticals (Basel),2017,10(4):83.
[30] Kobashi S,Terashima T,Katagi M,et al. Transplantation of M2-Deviated Microglia Promotes Recovery of Motor Function after Spinal Cord Injury in Mice [J]. Mol Ther,2020,28(1):254-265.
[31] Kiguchi N,Kobayashi Y,Saika F,et al. Peripheral interleukin-4 ameliorates inflammatory macrophage-dependent neuropathic pain [J]. Pain,2015,156(4):684-693.
[32] Saraiva M,Vieira P,O’Garra A. Biology and therapeutic potential of interleukin-10 [J]. J Exp Med,2020,217(1):e20190418.
[33] Hellenbrand DJ,Reichl KA,Travis BJ,et al. Sustained interleukin-10 delivery reduces inflammation and improves motor function after spinal cord injury [J]. J Neuroinflammation,2019,16(1):93.
[34] Moore KW,de Waal MR,Coffman RL,et al. Interleukin-10 and the interleukin-10 receptor [J]. Annu Rev Immunol,2001,19:683-765.
[35] Chen Y,Wang D,Cao S,et al. Association between Serum IL-37 and Spinal Cord Injury:A Prospective Observational Study [J]. Biomed Res Int,2020,2020:6664313.
[36] Coll-Miró M,Francos-Quijorna I,Santos-Nogueira E,et al. Beneficial effects of IL-37 after spinal cord injury in mice [J]. Proc Natl Acad Sci U S A,2016,113(5):1411-1416.
[37] Amo-Aparicio J,Sanchez-Fernandez A,Li S,et al. Extracellular and nuclear roles of IL-37 after spinal cord injury [J]. Brain Behav Immun,2021,91:194-201.
[38] Cavalli G,Dinarello CA. Suppression of inflammation and acquired immunity by IL-37 [J]. Immunol Rev,2018, 281(1):179-190.
[39] Hamidzadeh K,Christensen SM,Dalby E,et al. Macrop-hages and the Recovery from Acute and Chronic Inflammation [J]. Annu Rev Physiol,2017,79:567-592.
[40] Leal-Filho MB. Spinal cord injury:From inflammation to glial scar [J]. Surg Neurol Int,2011,2:112.
[41] Matsuda M,Huh Y,Ji RR. Roles of inflammation,neurogenic inflammation,and neuroinflammation in pain [J]. J Anesth,2019,33(1):131-139.
[1]
秦振英1 仲逢钰2 陈瑶2 李婧1 杨梓1 文娟3 王玉美4 胡幼芳1. 脂源性细胞因子对人脂肪细胞miR-506表达的调控影响 [J]. 中国医药导报, 2021, 18(9): 8-11,16.
[2]
李扬1,2 牧亚峰3 左新河1,2,3 田曼1,2▲ 赵勇1,2. 益气养阴消瘿方对自身免疫性甲状腺炎模型大鼠B细胞活化的调节作用 [J]. 中国医药导报, 2021, 18(8): 15-19,33.
[3]
卓丹1 王宇红1,2 于静波1,2 赵洪庆2 李姿蓉1 蔺晓源2,3 贺海霞3 姚欣艳3. 复方柴金解郁片治疗抑郁症的效果及对血清炎症因子和神经递质的影响 [J]. 中国医药导报, 2021, 18(8): 114-117,129.
[4]
黄鲜 张丽涓 王平. 血清miR-10a、IL-33水平对重症急性胰腺炎患者并发急性肾损伤的预测价值 [J]. 中国医药导报, 2021, 18(4): 29-32.
[5]
秦凯炜 陶艳霞 王家瑞. 慢性自发性荨麻疹患者血清IL-35、IL-17和TGF-β1水平变化及临床意义 [J]. 中国医药导报, 2021, 18(4): 94-97.
[6]
王正华 丁培 许乔雯 朱 慧▲. 五加减正气散治疗寒湿型小儿轮状病毒性肠炎的效果及对血清心肌酶谱、炎症因子的影响 [J]. 中国医药导报, 2021, 18(33): 107-110.
[7]
刘敏 王小燕 贾瑞琳 任存霞. 当归芍药散优化方抗慢性盆腔炎的实验研究 [J]. 中国医药导报, 2021, 18(3): 17-20.
[8]
陈栋1 朱峰2 龚杰1 耿德春3 王德超4. 改良Stoppa与经髂腹股沟入路用于髋臼骨折的临床观察 [J]. 中国医药导报, 2021, 18(3): 84-87,92.
[9]
陈锋 官众▲. 保留后方韧带复合体改良有限减压手术治疗胸腰椎爆裂骨折并脊髓损伤的临床研究 [J]. 中国医药导报, 2021, 18(3): 88-92.
[10]
姜荣荣 顾嘉美. 甘草附子汤加减辅助西药治疗中风后偏瘫对患者炎症因子、Klotho蛋白的影响 [J]. 中国医药导报, 2021, 18(3): 156-159,180.
[11]
潘志鹏 李思成 汤龙 姚黎清. HUCMSCs在脊髓损伤细胞移植应用中的研究进展 [J]. 中国医药导报, 2021, 18(29): 36-40.
[12]
刘晓萌1 张燕北2 于海明1 张贺1 孙媛媛2. 甲泼尼龙琥珀酸钠治疗儿童重症支原体肺炎的效果及对炎症因子的影响 [J]. 中国医药导报, 2021, 18(29): 98-101.
[13]
左薇1 穆敬平2 许明军1▲. 夹脊穴电针对实验性脊髓损伤后中枢性疼痛模型大鼠自发痛行为学和痛超敏现象的影响 [J]. 中国医药导报, 2021, 18(27): 17-20.
[14]
金磊1,2 朱佳佳3 杨亚东1. 血清白细胞介素-35、T细胞亚群与脓毒症病情严重程度及预后的关系 [J]. 中国医药导报, 2021, 18(25): 84-88.
[15]
何嘉璟 冯晓岚▲. 全麻下胸腔镜手术患者麻醉苏醒期低氧血症发生的影响因素分析 [J]. 中国医药导报, 2021, 18(25): 115-118.