骨髓间充质干细胞治疗心肌梗死的研究进展
赵丽平1 周晨明2 李菁菁3 徐彦楠4▲
1.河北医科大学基础医学院,河北石家庄 050017;
2.河北医科大学电镜实验中心,河北石家庄 050017;
3.河北医科大学细胞生物学教研室,河北石家庄 050017;
4.河北医科大学教学实验中心,河北石家庄 050017
Research progress of bone marrow mesenchymal stem cells in treatment of myocardial infarction
ZHAO Liping1 ZHOU Chenming2 LI Jingjing3 XU Yannan4▲
1.School of Basic Medical, Hebei Medical University, Hebei Province, Shijiazhuang 050017, China;
2.Electron microscope Laboratory Center, Hebei Medical University, Hebei Province, Shijiazhuang 050017, China;
3.Department of Cell Biology, Hebei Medical University, Hebei Province, Shijiazhuang 050017, China;
4.Teaching Experiment Center,Hebei Medical University, Hebei Province, Shijiazhuang 050017, China
摘要 心肌梗死是临床上最常见的危重症,严重威胁着人类的健康。骨髓间充质干细胞具有多向分化、易获取、快速增殖、免疫原性低、可移植性强等优点,是治疗心血管疾病的理想种子细胞。骨髓间充质干细胞治疗心肌梗死的机制包括抗炎与抗纤维化,促进新生血管形成,并能进行免疫调节。但在移植的过程中,移植细胞的存活又受移植细胞活性、迁移和归巢等因素的影响。本文就骨髓间充质干细胞的特点及治疗心肌梗死的机制进行如下综述。
关键词 :
骨髓间充质干细胞 ,
心肌梗死 ,
细胞治疗 ,
移植
Abstract :Myocardial infarction is the most common critical disease in clinic, which is a serious threat to human health. Bone marrow mesenchymal stem cells are ideal seed cells for the treatment of cardiovascular diseases due to their advantages of multidifferentiation, easy access, rapid proliferation, low immunogenicity and strong transplantability. The mechanism of bone marrow mesenchymal stem cells therapy in myocardial infarction includes anti-inflammatory and anti-fibrosis, promoting angiogenesis, and immune regulation. However, in the process of transplantation, the survival of transplanted cells is affected by the activity, migration, homing and other factors of transplanted cells. In this paper, the characteristics of bone marrow mesenchymal stem cells and the mechanism of treating myocardial infarction are summarized as follows.
Key words :
Bone marrow mesenchymal stem cells
Myocardial infarction
Cell therapy
Transplantation
基金资助: 河北省卫生和计划生育委员会医学科学研究重点课题(20180694);
河北医科大学临床学院省级大学生创新性实验计划项目(202013415011);
河北医科大学大学生创新性实验计划项目(USIP2020239)。
通讯作者:
▲通讯作者
[1] Wu Z,Chen G,Zhang J,et al. Treatment of myocardial infarction with gene-modified mesenchymal stem cells in a small molecular hydrogel [J]. Sci Rep,2017,7(1):15826.
[2] Carvalho E,Verma P,Hourigan K,et al. Myocardial infarction:stem cell transplantation for cardiac regeneration [J]. Regen Med,2015,10(8):1025-1043.
[3] Cambria E,Pasqualini FS,Wolint P,et al. Translational cardiac stem cell therapy:advancing from first-generation to next-generation cell types [J]. NPJ Regen Med,2017, 2:17.
[4] Madigan M,Atoui R. Therapeutic use of stem cells for myocardial infarction [J]. Bioengineering(Basel),2018,5(2):28.
[5] Lai RC,Yeo RW,Lim SK. Mesenchymal stem cell exosomes [J]. Semin Cell Dev Biol,2015,40:82-88.
[6] Cohnheim J. Ueber Entzündung und Eiterung [J]. Path Anat Physiol Klin Med,1867,40(1/2):1-79.
[7] Friedenstein AJ,Chailakhjan RK,Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells [J]. Cell Tissue Kinet,1970,3(4):393-403.
[8] Anasiz Y,Ozgul RK,Uckan-Cetinkaya D. A New chapter for mesenchymal stem cells:decellularized extracellular matrices [J]. Stem Cell Rev Rep,2017,13(5):587-597.
[9] Alstrup T,Eijken M,Bohn AB,et al. Isolation of adipose tissue-derived stem cells:enzymatic digestion in combination with mechanical distortion to increase adipose tissue-derived stem cell yield from human aspirated fat [J]. Curr Protoc Stem Cell Biol,2019,48(1):e68.
[10] Bieback K,Netsch P. Isolation culture and characterization of human umbilical cord blood-derived mesenchymal stromal cells [J]. Methods Mol Biol,2016,1416:245-258.
[11] Li J,Xu SQ,Zhao YM. Comparison of the biological characteristics of human mesenchymal stem cells derived from exfoliated deciduous teeth,bone marrow,gingival tissue,and umbilical cord [J]. Mol Med Rep,2018,18(6):4969-4977.
[12] Jia Z,Liang Y,Xu X,et al. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid by magnetic-activated cell sorting(MACS)[J]. Cell Biol Int,2018,42(3):262-271.
[13] Utama BI. Isolation of amniotic fluid mesenchymal stem cells (AF-MSCs)obtained from caesarean sections [J]. Journal Obgin Emas,2018,2(1):1-9.
[14] Schaun MI,Eibel B,Kristocheck M,et al. Cell therapy in ischemic heart disease:interventions that modulate cardiac regeneration [J]. Stem Cells Int,2016,2016:2171035.
[15] Katarzyna R. Adult stem cell therapy for cardiac repair in patients after acute myocardial infarction leading to ischemic heart failure:An overview of evidence from the recent clinical trials [J]. Curr Cardiol Rev,2017,13(3):223-231.
[16] 陈伟,卢明.低氧微环境对间充质干细胞生物学特性影响的研究进展[J].中华神经医学杂志,2019,18(4):410-412.
[17] 周治来,黄子祥,黄帅,等.低氧预处理脐带间充质干细胞移植促进大鼠脊髓损伤修复[J].神经解剖学杂志,2017,33(3):251-258.
[18] Tulotta C,Stefanescu C,Chen Q,et al. CXCR4 signaling regulates metastatic onset by controlling neutrophil motility and response to malignant cells [J]. Sci Rep,2019,9(1):2399.
[19] Chin S,Furukawa KI,Kurotaki K,et al. Facilitation of chemotaxis activity of mesenchymal stem cells via stromal cell-derived factor-1 and its receptor may promote ectopic ossification of human spinal ligaments [J]. J Pharmacol Exp Ther,2019,369(1):1-8.
[20] 王志红,林芸,叶海燕,等.过表达CXCR4促进小鼠骨髓间充质干细胞的归巢和增殖[J].细胞与分子免疫学杂志,2019,35(5):393-398.
[21] 周岩,金莲花,卢娜,等.3种体外培养方法诱导骨髓间充质干细胞向心肌细胞分化效果比较[J].吉林大学学报:医学版,2020,46(1):66-72,209.
[22] 陈晓依,王浩宇,吕洋,等.PFT-α与BMP-2联合诱导大鼠BMMSCs分化为心肌样细胞[J].基础医学与临床,2018,38(8):1088-1093.
[23] 张亚楠,陈炜,张金平,等.过表达GATA-4的骨髓间充质干细胞向心肌细胞分化的研究[J].河北医科大学学报,2019,40(8):877-881,901.
[24] Stamm C,Westphal B,Kleine HD,et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration [J]. Lancet,2003,361(9351):45-46.
[25] Zisa D,Shabbir A,Suzuki G,et al. Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair [J]. Biochem Biophys Res Commun,2009,390(3):834-838.
[26] Tao Z,Chen B,Tan X,et al. Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction(MI)heart [J]. Proc Natl Acad Sci U S A,2011, 108(5):2064-2069.
[27] Guo J,Zheng D,Li WF,et al. Insulin-like growth factor 1 treatment of MSCs attenuates inflammation and cardiac dysfunction following MI [J]. Inflammation,2014,37(6):2156-2163.
[28] 林琴琴,耿元文,张伟超,等.间歇运动激活miR-21/PTEN/Akt/SIRT1通路抑制NLRP3炎症小体表达保护心梗心功能[A].中国体育科学学会.第十一届全国体育科学大会论文摘要汇编[C].中国体育科学学会:中国体育科学学会,2019:3.
[29] 傅小媚,霍然,邓赛,等.脂多糖刺激的骨髓间充质干细胞来源外泌体改善小鼠心肌梗死后炎症和纤维化[J].中国临床药理学与治疗学,2019,24(8):841-851.
[30] Lee EJ,Hwang I,Kim GH,et al. Endothelin-1 Augments Therapeutic Potency of Human Mesenchymal Stem Cells via CDH2 and VEGF Signaling [J]. Mol Ther Methods Clin Dev,2019,13:503-511.
[31] Li X,Zhao H,Qi C,et al. Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis [J]. Protein Cell,2015,6(10):735-745.
[32] Zhao L,Liu X,Zhang Y,et al. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction [J]. Exp Cell Res,2016,344(1):30-39.
[33] Madrigal M,Rao KS,Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods [J]. J Transl Med,2014,12:260.
[34] Wang Y,Chen X,Cao W,et al. Plasticity of mesenchymal stem cells in immunomodulation:pathological and therapeutic implications [J]. Nat Immunol,2014,15(11):1009-1016.
[35] Huang Y,Yu P,Li W,et al. p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation [J]. Oncogene,2014,33(29):3830-3838.
[36] Volpe G,Bernstock JD,Peruzzotti-Jametti L,et al. Modulation of host immune responses following non-hematopoietic stem cell transplantation:Translational implications in progressive multiple sclerosis [J]. J Neuroimmunol,2019,331:11-27.
[37] Chen D,Tang P,Liu L,et al. Bone marrow-derived mesenchymal stem cells promote cell proliferation of multiple myeloma through inhibiting T cell immune responses via PD-1/PD-L1 pathway [J]. Cell Cycle,2018,17(7):858-867.
[38] Ray A,Das DS,Song Y,et al. Targeting PD1-PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells,natural killer cells and multiple myeloma cells [J]. Leukemia,2015,29(6):1441-1444.
[39] Davies LC,Heldring N,Kadri N,et al. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression [J]. Stem Cells,2017,35(3):766-776.
[40] Abumaree M,Al Jumah M,Pace RA,et al. Immunosuppressive properties of mesenchymal stem cells [J]. Stem Cell Rev Rep,2012,8(2):375-392.
[41] Franquesa M,Hoogduijn MJ,Bestard O,et al. Immuno-modulatory effect of mesenchymal stem cells on B cells [J]. Front Immunol,2012,3:212.
[1]
陈妍 宁艳 刘新玉 陈鹏典 吴家满 胡珊. 中药结合情志疗法对肾虚型体外受精-胚胎移植术后先兆流产患者的影响 [J]. 中国医药导报, 2020, 17(9): 145-148.
[2]
张荣峰 李丹娜 董颖雪. 急性ST段抬高型心肌梗死患者血清miR-1-3p、H-FABP水平变化及临床意义 [J]. 中国医药导报, 2020, 17(9): 168-172.
[3]
闫杰松 周栋 汤祥瑞 郭宏毅 赵宽. 心电图aVR T波形态与ST段抬高型心肌梗死患者冠状动脉病变程度的关系 [J]. 中国医药导报, 2020, 17(8): 76-79.
[4]
黄颖 张云 农文政 兰碧洋 潘如宝 张顶敏. 循环血ANRIL在急性心肌梗死早期诊断中的价值 [J]. 中国医药导报, 2020, 17(8): 80-83.
[5]
马聪 徐志伟 赵胜 高林 汪贵忠 史斌浩 成威. 麝香保心丸联合低分子肝素钙治疗急性ST段抬高型心肌梗死的效果 [J]. 中国医药导报, 2020, 17(7): 156-159,171.
[6]
罗群华 黎明江 王鑫 杨政. 冠状动脉非阻塞性心肌梗死的临床特征分析 [J]. 中国医药导报, 2020, 17(5): 59-62.
[7]
李扬 侯震 童惟依 邓靖飞 杨渊▲. 心脏移植术后免疫诱导预防排斥反应的系统评价 [J]. 中国医药导报, 2020, 17(35): 72-75.
[8]
王澎1 王钢2 张春和1 张爱民1 马肖1 左瑞菊1. 急性ST段抬高型心肌梗死患者血清sTWEAK、MMP-9水平变化及临床意义 [J]. 中国医药导报, 2020, 17(32): 20-23,39.
[9]
苏丹1 陈露2 张蕾1 沈爱宗1 唐丽琴1. 地尔硫■对肾移植患者环孢素A血药浓度的影响 [J]. 中国医药导报, 2020, 17(31): 99-102.
[10]
王敏1 王文1 李瑛2 孟庆奇1 杨伟民1 李斯明1. 关节镜下同种异体半月板移植治疗半月板缺损的体会 [J]. 中国医药导报, 2020, 17(3): 78-81.
[11]
夏容 杨盼 李建军 郭海春 张建梅 肖亚玲. 早卵泡期长方案促排卵过程中添加LH制剂对IVF/ICSI临床结局的影响 [J]. 中国医药导报, 2020, 17(3): 90-93,109.
[12]
周利平 崔恒▲ 盛俊 胡婕 夏雪峰. Neuman干预模式在肝移植术后高血糖患者中的应用效果 [J]. 中国医药导报, 2020, 17(28): 155-158.
[13]
沈雷 李永涛 孙石柱 姚立杰 王璐璐 刘丹阳 金海峰 张善强. CXCL-13通过激活PI3K-Akt信号通路对人骨髓间充质干细胞迁移的影响 [J]. 中国医药导报, 2020, 17(27): 4-7.
[14]
常翔宇 邓梦琪 张艳芹 吴迪 苗劲蔚. 同种异体移植方法小鼠子宫内膜异位症纤维化模型的建立 [J]. 中国医药导报, 2020, 17(25): 15-18.
[15]
吴正中1 李雪梅1 成艳君1 刘兰云2 覃春容1▲. 外源生长激素对多囊卵巢综合征患者IVF-ET治疗结局的影响 [J]. 中国医药导报, 2020, 17(21): 113-116.