Effect of Ckip-1 siRNA promotes osteogenic differentiation of bone marrow mesenchymal stem cells under extreme hypoxia
LIU Xiangzhong1,2 NING Yu3 HU Jing4 YANG Aofei5 CAI Hantao6 LI Zhanghua2
1.Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Hubei Province, Wuhan 430000, China;
2.Department of Orthopaedics, Tongren Hospital of Wuhan Universyity, Hubei Province, Wuhan 430000, China;
3.Department of Orthopaedics, Xiangyang Hospital of Traditional Chinese Medicine, Hubei Province, Xiangyang 441000, China;
4.Graduate School, Wuhan Sports University, Hubei Province, Wuhan 430000, China;
5.Department of Orthopaedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province, Wuhan 430000, China;
6.the First Clinical School, Hubei University of Traditional Chinese Medicine, Hubei Province, Wuhan 430000, China
Abstract:Objective To investigate the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by Ckip-1 siRNA under extreme hypoxia. Methods BMSCs were isolated and cultured in normal oxygen (20%) and extreme hypoxia (1%) for 72 h. The expression of osteogenic gene Runt-related transcription factor 2 (Runx2), Smad5 and bone morphogenetic protein 2 (BMP2) were detected by real-time quantitative PCR (qPCR) and Western blot. Alkaline phosphatase (ALP) activity in the supernatant was detected after 3, 5, 7 days of culture. BMSCs were cultured in 1% oxygen for 72 h to observe the effect of Ckip-1 siRNA on the expression of Runx2, Smad5, BMP2 and the activity of ALP. Results The osteogenic gene expression and ALP activity of BMSCs in 1% oxygen concentration were significantly lower than those in 20% oxygen concentration group, and the differences were statistically significant (P < 0.05); the osteogenic gene expression and ALP activity of BMSCs after transfection with Ckip-1 siRNA were significantly higher than those without transfection, and the differences were statistically significant (P < 0.05). Conclusion Hypoxia can inhibit the osteogenic differentiation of BMSCs, and Ckip-1 siRNA can promote the differentiation of BMSCs into osteoblasts.
刘想忠1,2 宁宇3 胡静4 杨傲飞5 蔡寒涛6 李章华2. 极度低氧条件下Ckip-1 siRNA促进骨髓间充质干细胞成骨分化作用[J]. 中国医药导报, 2020, 17(18): 10-14,23.
LIU Xiangzhong1,2 NING Yu3 HU Jing4 YANG Aofei5 CAI Hantao6 LI Zhanghua2. Effect of Ckip-1 siRNA promotes osteogenic differentiation of bone marrow mesenchymal stem cells under extreme hypoxia. 中国医药导报, 2020, 17(18): 10-14,23.
[1] Bashir J,Sherman A,Lee H,et al. Mesenchymal stem cell therapies in the treatment of musculoskeletal diseases [J]. Pm R,2014,6(1):61-69.
[2] Abdallah BM,Alzahrani AM,Kassem M. Secreted Clusterin protein inhibits osteoblast differentiation of bone marrow mesenchymal stem cells by suppressing ERK1/2 signaling pathway [J]. Bone,2018,110:221-229.
[3] Gordillo GM,Sen CK. Revisiting the essential role of oxygen in wound healing [J]. Am J Surg,2003,186(3):259-263.
[4] Muinos-López E,Ripalda-Cemboráin P,López-Martínez T,et al. Hypoxia and Reactive Oxygen Species Homeostasis in Mesenchymal Progenitor Cells Define a Molecular Mechanism for Fracture Nonunion [J]. Stem Cells,2016, 34(9):2342-2353.
[5] Li Z,Liao W,Zhao Q,et al. Angiogenesis and bone regeneration by allogeneic mesenchymal stem cell intravenous transplantation in rabbit model of avascular necrotic femoral head [J]. J Surg Res,2013,183(1):193-203.
[6] 赵强,廖文,柳铭,等.低氧对间充质干细胞成骨相关基6因表达的影响[J].生物技术通讯,2012,23(6):833-836.
[7] Peng X,Wu X,Zhang J,et al. The role of CKIP-1 in osteoporosis development and treatment [J]. Bone Joint Res,2018,7(2):173-178.
[8] 胡炯,王博,吴鹏,等.Ckip-1与骨质疏松的最新研究进展[J].中国骨质疏松杂志,2016,22(8):1053-1057.
[9] Li ZH,Liao W,Cui XL,et al. Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head [J]. Int J Med Sci,2011,8(1):74-83.
[10] Dinulovic I,Furrer R,Handschin C. Plasticity of the Muscle Stem Cell Microenvironment[J]. Adv Exp Med Biol,2017,1041:141-169.
[11] Chung HM,Won CH,Sung JH. Responses of adipose-derived stem cells during hypoxia:enhanced skin-regenerative potential [J]. Expert Opin Biol Ther,2009,9(12):1499-1508.
[12] Chen Y,Zhao Q,Yang X,et al. Effects of cobalt chloride on the stem cell marker expression and osteogenic differentiation of stem cells from human exfoliated deciduous teeth [J]. Cell Stress Chaperones,2019,24(3):527-538.
[13] 梁楚婷,郭炜骅,谭理,等.低氧诱导因子-1:细胞适应氧供应改变的关键蛋白[J].生物化学与生物物理进展,2019,46(11):1041-1049.
[14] 胡旭治,史新连,邓辉.大麻素Ⅱ型受体参与调控低氧微环境下大鼠骨髓间充质干细胞的骨向分化[J].温州医科大学学报,2019,49(8):563-567.
[15] 罗芸,马俊,钱前,等.不同低氧浓度对人脐带间充质干细胞向神经细胞分化的影响[J].解放军医药杂志,2019, 31(8):6-11.
[16] Holzwarth C,Vaegler M,Gieseke F,et al. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells [J]. BMC Cell Biol,2010,11:11.
[17] 李颉颃,苏志飞,白璇,等.唑来膦酸对大鼠骨髓间充质干细胞增殖及成骨分化的作用研究[J].华西口腔医学杂志,2019,37(3):242-247.
[18] 廖红兴,张志辉,刘展亮,等.低氧诱导因子1α与骨形态发生蛋白6协同过表达骨髓间充质干细胞在低氧环境下的成骨和成血管效应[J].中国组织工程研究,2019, 23(17):26-32.
[19] 王梓豪,贺继刚,谢巧丽,等.过表达GATA-4的小鼠骨髓间充质干细胞改善小鼠心肌梗死后的心功能[J].基础医学与临床,2019,39(9):1229-1233.
[20] Lu K,Yin X,Weng T,et al. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by Ckip-1 [J]. Nat Cell Biol,2008,10(8):994-1002.
[21] Piacentino ML,Bronner ME. Intracellular attenuation of BMP signaling via CKIP-1/Smurf1 is essential during neural crest induction [J]. PLoS Biol,2018,16(6):e2004425.
[22] Chan MC,Nguyen PH,Davis BN,et al. A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type Ⅱ receptor [J]. Mol Cell Biol,2007, 27(16):5776-5789.
[23] 陈俊凤,杨燕美,董溪溪,等.MicroRNA-20a通过调节Ckip-1促进小鼠C3H/10T1/2成骨分化[J].中国实验血液学杂志,2017,25(1):214-220.
[24] Zhou ZC,Che L,Kong L,et al. CKIP-1 silencing promotes new bone formation in rat mandibular distraction osteogenesis [J]. Oral Surg Oral Med Oral Pathol Oral Radiol,2017,123(1):e1-e9.