Abstract:M2 protein is a kind of membrane protein with ion channel activity in the envelop of influenza virus, which plays an important role in the life cycle of influenza virus. The N-terminal of the M2 protein is highly conserved, which is an important target for researching the universal vaccine. The transmembrane domain of M2 protein plays an important role in the progress of virus ribonucleoprotein complex entering into the nucleus, it is also the target for drug binding, but the appearance of drug-resistant mutants make the research of new drugs much more urgent. M2 protein also participates in the progress of virus budding, which is of great importance for the formation of virions. M2 protein can control the autophagy and apoptosis for the purpose of controlling the replication of virus through sophisticated mechanisms. This paper makes a review of M2 protein in the following aspects: vaccine research, proton conduction, drug research, assembly and budding, autophagy and apoptosis.
[1] Rossman JS,Jing X,Leser GP,et al. Influenza virus M2 protein mediates ESCRT-independent membrane scission [J]. Cell,2010,142(6):902-913.
[2] Mardanova ES,Kotlyarov RY,Kuprianov VV,et al. Rapid high-yield expression of acandidateinfluenza vaccine based on the ectodomain of M2 protein linked to flagellin in plants using viral vectors [J]. BMC Biotechnol,2015,15(1):42-51.
[3] Wu F,Huang JH,Yuan XY,et al. Characterization of immunity induced by M2e of influenza virus [J]. Vaccine,2007, 25(52):8868-8873.
[4] Lee YN,Kim MC,Lee YT,et al. Cross protection against influenza A virus by yeast-expressed heterologous tandem repeat M2 extracellular proteins [J]. PLos One,2015,10(9):1-19.
[5] Ravin NV,Kotlyarov RY,Mardanova ES,et al. Plant-produced recombinant influenza vaccine based on virus-like HBc particles carrying an extracellular domain of M2protein [J]. Biochemistry(Mosc),2012,77(1):33-40.
[6] Zeng W,Tan AC,Horrocks K,et al. A lipidated form of the extracellular domain of influenza M2 protein as a self-adjuvanting vaccine candidate [J]. Vaccine,2015,33(30):3526-3532.
[7] Lee YN,Kim MC,Lee YT,et al. Co-immunization with tandem repeat heterologous M2 extracellular proteins overcomes strain-specific protection of split vaccine against influenza A virus [J]. Antiviral Res,2015,122:82-90.
[8] Lee YN,Kim MC,Lee YT,et al. Mechanisms of cross-protection by influenza virus M2-based vaccines [J]. Immune Netw,2015,15(5):213-221.
[9] Wei GW,Meng WX,Guo HJ,et al. Potent neutralization of influenza A virus by a single domain antibody blocking M2 ion channel protein [J]. PLoS One,2011,6(12):e28309.
[10] Rossman JS,Lamb RA. Influenza virus assembly and budding [J]. Virology,2011,411(2):229-236.
[11] Hong M,Degrado WF. Structural basis for proton conduction and inhibition by the influenza M2 protein [J]. Protein Sci,2012,21(11):1620-1633.
[12] Acharya R,Carnevale V,Fiorin G,et al. Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus [J]. PNAS,2010,107(34):15075-15080.
[13] Dong H,Yi M,Cross TA,et al. Ab initio calculations and validation of the pH-dependent structures of the His37-Trp41 quartet,the heart of acid activation and proton conductance in the M2 protein of Influenza A virus [J]. Chem Sci,2013,4(7):2776-2787.
[14] Polishchuk AL,Lear JD,Ma C,et al. A pH-dependent conformational ensemble mediates proton transport through the influenza A/M2 protein [J]. Biochemistry,2010, 49(47):10061-10071.
[15] Cady S,Wang T,Hong M. Membrane-dependent effects of a cytoplasmic helix on the structure and drug binding of the influenza virus M2 protein [J]. J Am Chem Soc,2011,133(30):11572-11579.
[16] Pielak RM. Mechanism of drug inhibition and drug resistance of influenza A M2 channel [J]. PNAS,2009,106(18):7379-7384.
[17] Schnell JR,Chou JJ. Structure and mechanism of the M2 proton channel of influenza A virus [J]. Nature,2008, 451(7178):591-595.
[18] Cady SD,Schmidtrohr K,Wang J,et al. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers [J]. Nature,2010,463(7281):689-692.
[19] Khurana E, Devane RH,Dal PM,et al. Computational study of drug binding to the membrane-bound tetrameric M2 peptide bundle from influenza A virus [J]. Biochim Biophys Acta,2011,1808(2):530-537.
[20] Georgieva ER,Borbat PP,GrushinK,et al. Conformational response of influenza A M2 transmembrane domain to amantadine drug binding at low pH(pH 5.5)[J]. Front Physiol,2016,7:317-328.
[21] Furuse Y,Suzuki A,Oshitani H. Large-scale sequence analysis of M gene of influenza A viruses from different species:Mechanisms for emergence and spread of amantadine resistance [J]. Antimicrob Agents Chemother,2009, 53(10):4457-4463.
[22] Gleed ML,Busath DD. Why bound amantadine fails to inhibit proton conductance according to simulations of the drug-resistant influenza A M2(S31N)[J]. J Phys Chem B,2015,119(3):1225-1131.
[23] Li F,Ma CL,Degrado WF,et al. Discovery of highly potent inhibitors targeting the predominant drug-resistant S31N mutant of the influenza A virus M2 proton channel [J]. J Med Chem,2016,59(3):1207-1216.
[24] Reycarrizo M,Barniolxicot M,Ma CL,et al. Easily accessible polycyclic amines that inhibit the wild-type and amantadine-resistant mutants of the M2 channel of influenza A virus [J]. J Med Chem,2014,57(13):5738-5747.
[25] Bastian T,Stefanie S,Andreas H,et al. Acylation and cholesterol binding are not required for targeting of influenza A virus M2 protein to thehemagglutinin-defined budozone [J]. FEBS Letters,2014,588(6):1031-1036.
[26] Zhirnov OP,Klenk HD. Influenza A virus proteins NS1 and hemagglutinin along with M2 are involved in stimulation of autophagy in infected cells [J]. J Virol,2013,87(24):13107-13114.
[27] Gannagé M,Dormann D,Albrecht R,et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes [J]. Cell Host Microbe,2009,6(4):367-380.
[28] Beale R,Wise H,Stuart A,et al. A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability [J]. Cell Host Microbe,2014,15(2):239-247.
[29] Guan ZH,Liu D,Mi S,et al. Interaction of Hsp40 with influenza virus M2protein:implications for PKR signaling pathway [J]. Protein Cell,2010,1(10):944-955.