出血性脑卒中与细胞焦亡相关研究进展
郭佩鑫1 邹伟2
1.黑龙江中医药大学第一临床医学院,黑龙江哈尔滨 150036; 2.黑龙江中医药大学附属第一医院针灸三科,黑龙江哈尔滨 150036
Research progress on the relationship between hemorrhagic stroke and pyroptosis
GUO Peixin1 ZOU Wei2
1.The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Heilongjiang Province, Harbin 150036, China; 2.the Third Department of Acupuncture and Moxibustion, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heilongjiang Province, Harbin 150036, China
摘要 出血性脑卒中是一类高致死率、高致残率的严重疾病,包括脑实质出血和蛛网膜下腔出血,对患者的生命和生活质量造成严重危害。细胞焦亡是一种促炎性细胞死亡的方式,近年来研究发现细胞焦亡在脑卒中的生理病理过程中扮演者重要的角色,是减轻脑卒中后炎症反应和恢复神经功能的潜在治疗靶点,但对于细胞焦亡在出血性脑卒中后细胞死亡和炎症反应中发挥的作用与机制的论述相对较少。本文通过论述细胞焦亡分子机制及其与其他细胞死亡方式的区别,归纳近年来发表的文献中与细胞焦亡与出血性脑卒中的相关分子的实验研究,探索细胞焦亡在出血性脑卒中神经细胞死亡和炎症反应中所发挥的作用。
关键词 :
细胞焦亡 ,
出血性脑卒中 ,
脑实质出血 ,
蛛网膜下腔出血
Abstract :Hemorrhagic stroke is a serious disease with a high mortality and disability rate, including intracerebral hemorrhage and subarachnoid hemorrhage, which poses a serious threat to the life and quality of life of patients. Pyroptosis is a kind of proinflammatory cell death. In recent years, studies have found that pyroptosis plays an important role in the physiological and pathological process of stroke, and is a potential therapeutic target to reduce inflammatory response and restore neurological function after stroke. However, there are relatively few discussions on the role and mechanism of pyroptosis in cell death and inflammatory response after hemorrhagic stroke. This article discusses the molecular mechanism of pyroptosis and its difference from other cell death modes, summarizes the experimental studies on the molecules related to pyroptosis and hemorrhagic stroke in the published literature in recent years, and explores the role of pyroptosis in the neuronal death and inflammatory response of hemorrhagic stroke.
Key words :
Pyroptosis
Hemorrhagic stroke
Intracerebral hemorrhage
Subarachnoid hemorrhage
基金资助: 黑龙江省中医药管理局省级名中医专家传承工作室建设项目。
通讯作者:
邹伟(1965-),男,博士,博士生导师,主任医师,黑龙江中医药大学附属第一医院副院长;研究方向:中西医结合治疗脑病。
作者简介 : 郭佩鑫(1993-),男,黑龙江中医药大学第一临床医学院2020级中西医结合临床专业在读博士研究生;研究方向:中西医结合治疗脑病。
[1] Monta?o A,Hanley DF,Hemphill JC. Hemorrhagic stroke [J]. Handb Clin Neurol,2021,15(4):229-248. [2] Cookson BT,Brennan MA. Pro-inflammatory programmed cell death [J]. Trends Microbiol,2001,9(3):113-114. [3] Broz P,Pelegrín P,Shao F. The gasdermins,a protein family executing cell death and inflammation [J]. Nat Rev Immunol,2020,20(3):143-157. [4] Yu P,Zhang X,Liu N,et al. Pyroptosis:mechanisms and diseases [J]. Signal Transduct Tar,2021,6(1):128-149. [5] Burdette BE,Esparza AN,Zhu H,et al. Gasdermin D in pyroptosis [J]. Acta Pharm Sin B,2021,11(9):2768-2782. [6] Bertheloot D,Latz E,Franklin BS. Necroptosis,pyroptosis and apoptosis:an intricate game of cell death [J]. Cell Mol Immunol,2021,18(5):1106-1121. [7] Al Mamun A,Mimi AA,Aziz MA,et al. Role of pyroptosis in cancer and its therapeutic regulation [J]. Eur J Pharmacol,2021,910:174444. [8] Rathinam V,Zhao Y,Shao F. Innate immunity to intracellular LPS [J]. Nat Immunol,2019,20(5):527-533. [9] Wang K,Sun Q,Zhong X,et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis [J]. Cell,2020,180(5):941-955. [10] Weir A,Vince JE. No longer married to inflammasome signaling:the diverse interacting pathways leading to pyroptotic cell death [J]. Biochem J,2023,479(10):1083-1102. [11] de Vasconcelos NM,Van Opdenbosch N,Van Gorp H,et al. An apoptotic caspase network safeguards cell death induction in pyroptotic macrophages [J]. Cell Rep,2020,32(4):107959. [12] Tang R,Xu J,Zhang B,et al. Ferroptosis,necroptosis,and pyroptosis in anticancer immunity [J]. J Hematol Oncol,2020,13(1):110-128. [13] Deng Y,Li Z,Sun X,et al. TRIM29(tripartite motif containing 29) alleviates NLRC4 (NLR family CARD domain containing protein 4) inflammasome related cerebral injury via promoting proteasomal degradation of NLRC4 in ischemic stroke [J]. Stroke,2023,54(5):1377-1389. [14] Bellut M,Papp L,Bieber M,et al. NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood-brain barrier integrity in murine stroke [J]. Cell Death Dis,2021,13(1):20-30. [15] Khoshkhoo S,Wang Y,Chahine Y,et al. Contribution of somatic Ras/Raf/Mitogen-Activated Protein Kinase Variants in the hippocampus in drug-resistant mesial temporal lobe epilepsy [J]. JAMA Neurol,2023,80(6):578-587. [16] Gu L,Sun M,Li R,et al. Didymin suppresses microglia pyroptosis and neuroinflammation through the Asc/Caspase-1/GSDMD pathway following experimental intracerebral hemorrhage [J]. Front Immunol,2022,13(5):810582. [17] Gu L,Sun M,Li R,et al. Activation of RKIP binding ASC attenuates neuronal pyroptosis and brain injury via Caspase-1/GSDMD signaling pathway after intracerebral hemorrhage in mice [J]. Transl Stroke Res,2022,13(6):1037- 1054. [18] Ding Z,Zhong Z,Wang J,et al. Inhibition of Dectin-1 alleviates neuroinflammatory injury by attenuating NLRP3 inflammasome-mediated pyroptosis after intracerebral hem- orrhage in mice:preliminary study results [J]. J Inflamm Res,2022,15(10):5917-5933. [19] Chen S,Zuo Y,Huang L,et al. The MC4 receptor agonist RO27-3225 inhibits NLRP1-dependent neuronal pyroptosis via the ASK1/JNK/p38 MAPK pathway in a mouse model of intracerebral haemorrhage [J]. Br J Pharmacol,2019,176(9):1341-1356. [20] Yan J,Xu W,Lenahan C,et al. CCR5 activation promotes NLRP1-dependent neuronal pyroptosis via CCR5/PKA/ CREB pathway after intracerebral hemorrhage [J]. Stroke,2021,52(12):4021-4032. [21] Guo M,Ge X,Wang C,et al. Intranasal delivery of gene- edited microglial exosomes improves neurological outcomes after intracerebral hemorrhage by regulating neuroinflammation [J]. Brain Sci,2023,13(4):639-656. [22] Khatami SH,Karami N,Taheri-Anganeh M,et al. Exosomes:promising delivery tools for overcoming blood-brain barrier and glioblastoma therapy [J]. Mol Neurobiol,2023,47(3):1-20. [23] Hu LT,Wang BY,Fan YH,et al. Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage [J]. Neural Regen Res,2023,18(3):560-567. [24] Huang Y,Wang H,Hao Y,et al. Myeloid PTEN promotes chemotherapy-induced NLRP3-inflammasome activation and antitumour immunity [J]. Nat Cell Biol,2020,22(6):716-727. [25] Chen J,Li M,Liu Z,et al. Molecular mechanisms of neuronal death in brain injury after subarachnoid hemorrhage [J]. Front Cell Neurosci,2022,16(10):1025708. [26] Said M,Gümüs M,Rodemerk J,et al. Systematic review and meta-analysis of outcome-relevant anemia in patients with subarachnoid hemorrhage [J]. Sci Rep,2022,12(1):20738. [27] Hirsch Y,Geraghty JR,Katz EA,et al. Inflammasome Caspase-1 activity is elevated in cerebrospinal fluid after aneurysmal subarachnoid hemorrhage and predicts functional outcome [J]. Neurocrit Care,2021,34(3):889-898. [28] Yuan B,Zhou XM,You ZQ,et al. Inhibition of AIM2 inflammasome activation alleviates GSDMD-induced pyroptosis in early brain injury after subarachnoid hemorrhage [J]. Cell Death Dis,2020,11(1):76-92. [29] Fang Y,Wang X,Lu J,et al. Inhibition of caspase-1-mediated inflammasome activation reduced blood coagulation in cerebrospinal fluid after subarachnoid hemorrhage [J]. Ebiomedicine,2022,76(2):103843. [30] Yan A,Pan X,Wen X,et al. Activated protein C overexpression suppresses the pyroptosis of subarachnoid hemorrhage model cells by regulating the NLRP3 inflammasome pathway [J]. Exp Ther Med,2021,22(6):1391-1398. [31] Xu P,Tao C,Zhu Y,et al. TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage [J]. J Neuroinflammation,2021,18(1):188. [32] Wei B,Liu W,Jin L,et al. Dexmedetomidine inhibits gasdermin D-induced Pyroptosis via the PI3K/AKT/GSK3β pathway to attenuate neuroinflammation in early brain injury after subarachnoid hemorrhage in rats [J]. Front Cell Neurosci,2022,16(10):899484. [33] Ouyang X,Zhou J,Lin L,et al. Pyroptosis,inflammasome,and gasdermins in tumor immunity [J]. Innate Immun,2023, 29(1):3-13. [34] Berkel C,Cacan E. Differential expression and copy number variation ofgasdermin (GSDM) family members,pore- forming proteins in pyroptosis,in normal and malignant serous ovarian tissue [J]. Inflammation,2021,44(6):2203- 2216.
[1]
王莹1 殷豆豆1 巢楠2. 达格列净通过Caspase-1介导的细胞焦亡对糖尿病肾病小鼠肾损伤的影响 [J]. 中国医药导报, 2023, 20(8): 34-37.
[2]
申屠华松 陈亦华 程振宇. 巨噬细胞移动抑制因子在大鼠蛛网膜下腔出血后早期脑损伤中的作用 [J]. 中国医药导报, 2023, 20(21): 14-18.
[3]
耿强1 张静静2 伊合山·艾尼瓦尔2 张冰2. 焦亡通路核因子κB/胱天蛋白酶-1在右美托咪定缓解糖尿病大鼠肾缺血再灌注后心肌易损性中的作用 [J]. 中国医药导报, 2023, 20(21): 25-28,34.
[4]
陈雅芳1 李思1 史洋2 魏丽萍3. 潜质未定克隆性造血致动脉粥样硬化及NLRP3炎性小体治疗作用研究进展 [J]. 中国医药导报, 2023, 20(21): 40-44.
[5]
沈艳 邓如明. 基于前馈控制的思维导图护理流程在SAH患者栓塞术围手术期的应用研究 [J]. 中国医药导报, 2023, 20(21): 171-174.
[6]
黄润芝1 曹长青2 李宇宁2. 细胞焦亡在新生儿缺氧缺血性脑病中的研究进展 [J]. 中国医药导报, 2023, 20(18): 56-60.
[7]
成茜 李正明 杨梦兰 卢婷婷 杨艳. 基于色彩心理学理念的系统化护理模式对蛛网膜下腔出血患者心理状态和生存质量的影响 [J]. 中国医药导报, 2023, 20(17): 161-165.
[8]
许绍廷 张赟建▲. 基于细胞焦亡相关lncRNA构建甲状腺癌的预后模型研究 [J]. 中国医药导报, 2023, 20(15): 12-17.
[9]
梁爽1 叶心雨1 杨军2 孙绍裘2. 基于CiteSpcae与VOSviewer对滑膜细胞与细胞焦亡研究趋势的可视化分析 [J]. 中国医药导报, 2023, 20(12): 19-24.
[10]
阳庆林1 谢犇1 杨杜斌1 王一坤1 秦庆庆1 王勇平2. 细胞焦亡在关节炎中的作用机制及研究进展 [J]. 中国医药导报, 2023, 20(1): 49-52,60.
[11]
李兰石1 王颖2. 基于细胞焦亡的中药治疗抑郁症合并冠心病的机制研究进展 [J]. 中国医药导报, 2022, 19(18): 38-41.
[12]
孙晓怡1 姜玉勤1 唐余燕2 刘何晶1 陆迅3 魏明刚2. 细胞焦亡机制及其在多种肾脏病中的作用 [J]. 中国医药导报, 2021, 18(33): 53-56.
[13]
徐璐1 王贺2 岳珂1 魏珂1 解金红2 关怀敏2. 细胞焦亡在动脉粥样硬化中的作用及其研究进展 [J]. 中国医药导报, 2021, 18(31): 46-49.
[14]
申洁1 王静2▲. 蛛网膜下腔出血患者术后急性压疮形成的影响因素分析 [J]. 中国医药导报, 2021, 18(14): 81-84.
[15]
张梁 李婧. 细胞焦亡与PCSK9在动脉粥样硬化中的研究进展 [J]. 中国医药导报, 2020, 17(21): 54-57.