巨噬细胞极化在动脉粥样硬化病理过程中分子机制的研究进展
彭超杰 吴林柯 吴鸿
河南中医药大学第二临床医学院,河南郑州 450000
Research progress on molecular mechanism of macrophage polarization in atherosclerosis
PENG Chaojie WU Linke WU Hong
The Second Clinical Medical College, Henan University of Chinese Medicine, Henan Province, Zhengzhou 450000, China
摘要 巨噬细胞是动脉粥样硬化发展过程中重要的免疫细胞之一,其表型及功能对于动脉粥样硬化发生发展具有重要决定作用,其中M1型巨噬细胞通过破坏其线粒体功能,促进糖酵解代谢及活性氧释放,干扰巨噬细胞脂质代谢平衡,维持和扩大炎症反应,降低巨噬细胞清除吞噬坏死细胞能力,加速坏死核心形成和不稳定斑块破裂发生。而M2型巨噬细胞则具有维持线粒体正常呼吸功能,促进氧化磷酸化代谢,增强胞内脂质流出,减轻炎症反应,修复受损组织并清理坏死细胞,维持斑块稳定性等方式抑制动脉粥样硬化进展。目前临床用于防治动脉粥样硬化的药物也表现出调控巨噬细胞极化的潜力。因此进一步探索并总结调控巨噬细胞极化在动脉粥样硬化病理过程中的分子机制及有效靶点是深入研究防治动脉粥样硬化有效措施的潜在方向。
关键词 :
动脉粥样硬化 ,
巨噬细胞极化 ,
巨噬细胞表型 ,
M1型巨噬细胞 ,
M2型巨噬细胞
Abstract :Macrophages are one of the important immune cells in the development of atherosclerosis, and their phenotype and function play an important role in the occurrence and development of atherosclerosis. M1-type macrophages, by destroying their mitochondrial function, promote glycolysis and the release of reactive oxygen species, interfere with the balance of lipid metabolism of macrophages, maintain and expand the inflammatory response, and reduce the ability of macrophages to eliminate phagocytic necrotic cells. Accelerate the formation of necrotic cores and the occurrence of unstable plaque rupture. M2 type macrophages can maintain the normal respiratory function of mitochondria, promote oxidative phosphorylation metabolism, enhance intracellular lipid outflow, reduce inflammatory reaction, repair damaged tissues, clean necrotic cells, maintain plaque stability, and inhibit the progression of atherosclerosis. At present, the drugs used to prevent and treat atherosclerosis also show the potential to regulate the polarization of macrophages. Therefore, to further explore and summarize the molecular mechanism and effective target of regulating macrophage polarization in the pathological process of atherosclerosis is the potential direction of in-depth research on effective measures to prevent and treat atherosclerosis.
Key words :
Atherosclerosis
Macrophage polarization
Macrophage phenotype
M1-type macrophages
M2-type macrophages
基金资助: 国家自然科学基金面上项目(81673800)。
通讯作者:
吴鸿(1974.12-),男,医学博士,主任医师,教授,博士生导师;研究方向:中医药防治心血管病。
作者简介 : 彭超杰(1996.3-),女,河南中医药大学第二临床医学院2020级中医内科学专业在读硕士研究生;研究方向:中医药防治心血管疾病。
[1] Tsao CW,Aday AW,Almarzooq ZI,et al. Heart Disease and Stroke Statistics-2022 Update:A Report From the American Heart Association [J]. Circulation,2022,145(8):e153-e639.
[2] Tabas I,Bornfeldt KE. Intracellular and Intercellular Aspects of Macrophage Immunometabolism in Atherosclerosis [J]. Circ Res,2020,126(9):1209-1227.
[3] Barrett TJ. Macrophages in Atherosclerosis Regression [J]. Arterioscler Thromb Vasc Biol,2020,40(1):20-33.
[4] Mushenkova NV,Nikiforov NG,Melnichenko AA,et al. Functional Phenotypes of Intraplaque Macrophages and Their Distinct Roles in Atherosclerosis Development and Atheroinflammation [J]. Biomedicines,2022,10(2):24-32.
[5] Libby P,Buring JE,Badimon L,et al. Atherosclerosis [J]. Nat Rev Dis Primers,2019,5(1):56-73.
[6] Eligini S,Cosentino N,Fiorelli S,et al. Biological profile of monocyte-derived macrophages in coronary heart disease patients:implications for plaque morphology [J]. Sci Rep,2019,9(1):80-86.
[7] Luan Y,Luan Y,Yuan RX,et al. Structure and Function of Mitochondria-Associated Endoplasmic Reticulum Membr- anes (MAMs) and Their Role in Cardiovascular Diseases [J].
Oxid Med Cell Longev,2021,2021:45-78.
[8] Forteza MJ,Ketelhuth DFJ. Metabolism in atherosclerotic plaques:immunoregulatory mechanisms in the arterial wall [J]. Clin Sci (Lond),2022,136(6):435-454.
[9] Viola A,Munari F,Sanchez-Rodriguez R,et al. The Metabolic Signature of Macrophage Responses [J]. Front Immunol,2019, 10:1462.
[10] Zhao L,Cozzo AJ,Johnson AR,et al. Lack of myeloid Fatp1 increases atherosclerotic lesion size in Ldlr-/- mice [J]. Atherosclerosis,2017,266:182-189.
[11] Han X,Ma W,Zhu Y,et al. Advanced glycation end products enhance macrophage polarization to the M1 phenotype via the HIF-1alpha/PDK4 pathway [J]. Mol Cell Endocrinol,2020,514:110-118.
[12] You Y,Bao WL,Zhang SL,et al. Sorting Nexin 10 Mediates Metabolic Reprogramming of Macrophages in Atherosclerosis Through the Lyn-Dependent TFEB Signaling Pathway [J]. Circ Res,2020,127(4):534-549.
[13] Leong XF. Lipid Oxidation Products on Inflammation-Mediated Hypertension and Atherosclerosis:A Mini Review [J]. Front Nutr,2021,8:717740.
[14] Lee-Rueckert M,Lappalainen J,Kovanen PT,et al. Lipid- Laden Macrophages and Inflammation in Atherosclerosis and Cancer:An Integrative View [J]. Front Cardiovasc Med, 2022,9:777-822.
[15] Groenen AG,Halmos B,Tall AR,et al. Cholesterol efflux pathways,inflammation,and atherosclerosis [J]. Crit Rev Bio- chem Mol Biol,2021,56(4):426-439.
[16] Song F,Li JZ,Wu Y,et al. Ubiquitinated ligation protein NEDD4L participates in MiR-30a-5p attenuated atheros- clerosis by regulating macrophage polarization and lipid metabolism [J]. Mol Ther Nucleic Acids,2021,26:1303- 1317.
[17] Fasolo F,Jin H,Winski G,et al. Long Noncoding RNA MIAT Controls Advanced Atherosclerotic Lesion Formation and Plaque Destabilization [J]. Circulation,2021,144(19):1567-1583.
[18] Dotan I,Yang J,Ikeda J,et al. Macrophage Jak2 deficiency accelerates atherosclerosis through defects in cholesterol efflux [J]. Commun Biol,2022,5(1):132.
[19] Cui K,Gao X,Wang B,et al. Epsin Nanotherapy Regulates Cholesterol Transport to Fortify Atheroma Regression [J]. Circ Res,2023,132(1):22-42.
[20] Back M,Yurdagul AJr,Tabas I,et al. Inflammation and its resolution in atherosclerosis:mediators and therapeutic opportunities [J]. Nat Rev Cardiol,2019,16(7):389-406.
[21] Orecchioni M,Ghosheh Y,Pramod AB,et al. Corrigendum:Macrophage Polarization:Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages [J]. Front Immunol,2020,11:234- 243.
[22] Jinnouchi H,Guo L,Sakamoto A,et al. Diversity of macrop- hage phenotypes and responses in atherosclerosis [J]. Cell Mol Life Sci,2020,77(10):1919-1932.
[23] Azemi AK,Mokhtar SS,Sharif SET,et al. Clinacanthus nutans attenuates atherosclerosis progression in rats with type 2 diabetes by reducing vascular oxidative stress and inflammation [J]. Pharm Biol,2021,59(1):1432-1440.
[24] Qian Z,Yang H,Li H,et al. The Cholinergic Anti-Inflammatory Pathway Attenuates the Development of Atherosclerosis in Apoe-/- Mice through Modulating Macrophage Functions [J]. Biomedicines,2021,9(9):76-85.
[25] Yang C,Xiao X,Huang L,et al. Role of Kruppel-like factor 4 in atherosclerosis [J]. Clin Chim Acta,2021,512:135- 141.
[26] Kourtzelis I,Hajishengallis G,Chavakis T. Phagocytosis of Apoptotic Cells in Resolution of Inflammation [J]. Front Immunol,2020,11:553.
[27] Malekmohammad K,Bezsonov EE,Rafieian-Kopaei M. Role of Lipid Accumulation and Inflammation in Atherosclerosis:Focus on Molecular and Cellular Mechanisms [J]. Front Cardiovasc Med,2021,8:70-75.
[28] Yurdagul A Jr,Subramanian M,Wang X,et al. Macrophage Metabolism of Apoptotic Cell-Derived Arginine Promotes Continual Efferocytosis and Resolution of Injury [J]. Cell Metab,2020,31(3):518-533.
[29] Kasikara C,Schilperoort M,Gerlach B,et al. Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis [J]. J Clin Invest,2021,131(8):e145275.
[30] Doddapattar P,Dev R,Ghatge M,et al. Myeloid Cell PKM2 Deletion Enhances Efferocytosis and Reduces Atherosclerosis [J]. Circ Res,2022,130(9):1289-1305.
[31] Zhang J,Zhao X,Guo Y,et al. Macrophage ALDH2 (Aldehyde Dehydrogenase 2) Stabilizing Rac2 Is Required for Efferocytosis Internalization and Reduction of Atherosclerosis Development [J]. Arterioscler Thromb Vasc Biol,2022, 42(6):700-716.
[32] Anandan V,Thulaseedharan T,Suresh Kumar A,et al. Cyclophilin A Impairs Efferocytosis and Accelerates Ather-osclerosis by Overexpressing CD 47 and Down-Regulating Calreticulin [J]. Cells,2021,10(12):56-67.
[33] Shioi A,Ikari Y. Plaque Calcification During Atherosclerosis Progression and Regression [J]. J Atheroscler Thromb,2018,25(4):294-303.
[34] Simoes FC,Cahill TJ,Kenyon A,et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair [J]. Nat Commun,2020,11(1):600-607.
[35] Baardman J,Verberk SGS,Van Der Velden S,et al. Macrop- hage ATP citrate lyase deficiency stabilizes atherosclerotic plaques [J]. Nat Commun,2020,11(1):62-96.
[36] Van Ingen E,Foks AC,Woudenberg T,et al. Inhibition of microRNA-494-3p activates Wnt signaling and reduces proinflammatory macrophage polarization in atherosclerosis [J]. Mol Ther Nucleic Acids,2021,26:1228-1239.
[37] Xu R,Li C,Wu Y,et al. Role of KCa3.1 Channels in Macro- phage Polarization and Its Relevance in Atherosclerotic Plaque Instability [J]. Arterioscler Thromb Vasc Biol,2017, 37(2):226-236.
[38] Zhang X,Qin Y,Wan X,et al. Rosuvastatin exerts anti- atherosclerotic effects by improving macrophage-related foam cell formation and polarization conversion via mediating autophagic activities [J]. J Transl Med,2021,19(1):62.
[39] Bruen R,Curley S,Kajani S,et al. Liraglutide dictates mac- rophage phenotype in apolipoprotein E null mice during early atherosclerosis [J]. Cardiovasc Diabetol,2017,16(1):143.
[40] Fang L,Chen L,Song M,et al. Naoxintong accelerates diabetic wound healing by attenuating inflammatory respo- nse [J]. Pharm Biol,2021,59(1):252-261.
[41] 蔡芸,信琪琪,刘静,等.参连复脉颗粒对脂多糖诱导的RAW264.7巨噬细胞极化的影响[J].中西医结合心脑血管病杂志,2022,20(19):3542-3547.
[42] 周冠进.冠心平调控巨噬细胞泡沫化及极化状态影响动脉粥样硬化的实验研究[D].南京:南京中医药大学,2020.
[1]
李聪 高永红▲. 非高密度脂蛋白胆固醇水平与老年冠心病患者冠脉病变程度的相关性分析 [J]. 中国医药导报, 2023, 20(8): 66-69.
[2]
吴茜 李兰兰 曹琳琳 王师菡. 基于数据挖掘的痰瘀同治法治疗动脉粥样硬化的用药规律 [J]. 中国医药导报, 2023, 20(6): 119-122,144.
[3]
李星 刘京锋 李博. 血清miR-125a-3p、miR-224-3p表达与脑梗死患者颈动脉粥样硬化斑块的关系 [J]. 中国医药导报, 2023, 20(26): 91-95.
[4]
刘桐桐1 钱航2 李云鹏2 邬闻文3 闵新文2 杨汉东2 陈俊2 李东锋2. 脂肪蓄积指数与动脉粥样硬化性心血管疾病风险水平的相关性研究 [J]. 中国医药导报, 2023, 20(23): 77-80.
[5]
袁亚利 谢春娥 毛堂友 陈慧慧 焦瑶 邢韵淇 张文基 韩海啸. 苓桂术甘汤调控巨噬细胞极化改善非酒精性脂肪性肝炎的机制研究 [J]. 中国医药导报, 2023, 20(22): 13-17.
[6]
陈雅芳1 李思1 史洋2 魏丽萍3. 潜质未定克隆性造血致动脉粥样硬化及NLRP3炎性小体治疗作用研究进展 [J]. 中国医药导报, 2023, 20(21): 40-44.
[7]
汤紫薇 谷依檬 吴艳艳 杨琳 薛梅. 活血解毒Ⅰ号方抗动脉粥样硬化的网络药理学分析及实验验证 [J]. 中国医药导报, 2022, 19(33): 5-12,17.
[8]
王璨 侯焕喜 黄卫 刘红莉. 丁苯酞序贯疗法联合双抗血小板治疗急性脑梗死合并颈动脉粥样硬化患者的效果及对神经功能、血清Hcy、hs-CRP水平的影响 [J]. 中国医药导报, 2022, 19(32): 84-87.
[9]
蔡子纯 李纪明. 动脉僵硬度增加的发生机制及评估方法的研究进展 [J]. 中国医药导报, 2022, 19(30): 50-53,57.
[10]
魏佳明1 王子焱1 刘婷2 王建国2 郭志华2. NOX/ROS-NF-κB信号通路与动脉粥样硬化关系的研究进展 [J]. 中国医药导报, 2022, 19(24): 48-51.
[11]
薛文静 胡元会 杨一格 柴若宁 许荣荣. 基于CiteSpace的中医药治疗动脉粥样硬化的文献计量及可视化分析 [J]. 中国医药导报, 2022, 19(19): 16-19,24.
[12]
史丽1 任卫东1 王立坤2 李朝喜2 张志英1 邓文娟1 胡利梅1 左丽娟1. 老年男性糖尿病患者骨质疏松与颈动脉粥样硬化的相关性研究 [J]. 中国医药导报, 2022, 19(18): 20-23.
[13]
苑宝文1 李筹忠2 陈瑜峰3 魏玲3. 血清UA水平与脑梗死患者颅内外动脉粥样硬化性狭窄的关系 [J]. 中国医药导报, 2021, 18(5): 61-64.
[14]
闫黎 申定珠. 补肾降脂方调控自噬与胆固醇流出干预ApoE-/-小鼠动脉粥样硬化的机制研究 [J]. 中国医药导报, 2021, 18(33): 7-11.
[15]
徐璐1 王贺2 岳珂1 魏珂1 解金红2 关怀敏2. 细胞焦亡在动脉粥样硬化中的作用及其研究进展 [J]. 中国医药导报, 2021, 18(31): 46-49.