潜质未定克隆性造血致动脉粥样硬化及NLRP3炎性小体治疗作用研究进展
陈雅芳1 李思1 史洋2 魏丽萍3
1.天津中医药大学研究生院,天津 301617;
2.南开大学生命科学学院,天津 300071;
3.天津市人民医院心脏内科,天津 300270
Research progress on atherosclerosis induced by clonal hematopoiesis of indeterminate potential and the therapeutic effect of NLRP3 inflammasome
CHEN Yafang1 LI Si1 SHI Yang2 WEI Liping3
1.Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
2.College of Life Sciences, Nankai University, Tianjin 300071, China;
3.Department of Cardiology, Tianjin Union Medical Center, Tianjin 300270, China
摘要 近年来有研究显示,体细胞驱动基因突变导致的潜质未定克隆性造血(CHIP)刺激炎症标志物升高是动脉粥样硬化性心血管疾病发生及发展的因素之一,核苷酸结合寡聚结构域样受体家族Pyrin结构域中的NLRP3炎性小体,是细胞焦亡的重要调控分子,在其炎症过程中起着关键作用。MCC950作为一种特定的小分子抑制剂,对于NLRP3炎性小体介导细胞焦亡具有选择性的抑制作用,因此,MCC950有望成为临床治疗CHIP介导炎症所致动脉粥样硬化性心血管疾病的有效药物。本文从CHIP相关基因突变入手,概述了NLRP3炎性小体调控细胞焦亡作用于动脉粥样硬化发病机制,以及NLRP3炎性小体选择性抑制剂MCC950作用于CHIP诱发动脉粥样硬化的作用及机制,为临床治疗动脉粥样硬化开辟新的道路。
关键词 :
潜质未定克隆性造血 ,
NLRP3炎性小体 ,
动脉粥样硬化 ,
细胞焦亡 ,
MCC950 ,
突变
Abstract :In recent years, some studies have shown that the increase of inflammatory markers, which results from the clonal hematopoiesis of indeterminate potential (CHIP) caused by somatic cell driven gene mutation, is one of the factors for the occurrence and development of atherosclerotic cardiovascular disease. The NLRP3 inflammasome in the Pyrin domain of the nucleotide-binding oligomeric domain-like receptor family, is an important regulator of pyroptosis and plays a key role in the inflammatory process. As a specific small-molecule inhibitor, MCC950 has a selective inhibitory effect on NLRP3 inflammasome mediated pyroptosis. Therefore, MCC950 is expected to become an effective drug for the clinical treatment of atherosclerotic cardiovascular diseases caused by inflammation mediated by CHIP. Starting from the related mutation of CHIP induced gene, this paper summarizes the pathogenesis of atherosclerosis mediated by the regulation of pyroptosis by NLRP3 inflammasome, and the role and mechanism of selective inhibitor MCC950 of NLRP3 inflammasome on the induction of atherosclerosis by CHIP, so as to provide a basis for clinical treatment of atherosclerosis.
Key words :
Clonal hematopoiesis of indeterminate potential
NLRP3 inflammasome
Atherosclerosis
Pyroptosis
MCC950
Mutation
基金资助: 国家自然科学基金面上项目(52173285);
京津冀专项项目(19JCZDJC63900)。
通讯作者:
魏丽萍(1972.7-),女,博士,主任医师,主要从事冠心病临床与基础研究、化疗药物心肌损伤及保护研究。
作者简介 : 陈雅芳(1998.12-),女,天津中医药大学研究生院2021级中西医结合临床专业在读硕士研究生,主要从事心血管方面的研究。
[1] Libby P. The changing landscape of atherosclerosis [J]. Nature,2021,592(7855):524-533.
[2] Steensma DP,Bejar R,Jaiswal S,et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes [J]. Blood,2015,126(1):9-16.
[3] Jaiswal S,Libby P. Clonal haematopoiesis:connecting ageing and inflammation in cardiovascular disease [J]. Nat Rev Cardiol,2020,17(3):137-144.
[4] Marnell CS,Bick A,Natarajan P. Clonal hematopoiesis of indeterminate potential (CHIP):linking somatic mutations,hematopoiesis,chronic inflammation and cardiovascular disease [J]. J Mol Cell Cardiol,2021,161:98-105.
[5] Bhattacharya R,Zekavat SM,Haessler J,et al. Clonal hemat- opoiesis is associated with higher risk of stroke [J]. Stroke,2022,53(3):788-797.
[6] Sano S,Oshima K,Wang Y,et al. Tet2-mediated clonal hem- atopoiesis accelerates heart failure through a mechanism involving the IL-1beta/NLRP3 inflammasome [J]. J Am Coll Cardiol,2018,71(8):875-886.
[7] Murphy AJ,Dragoljevic D,Natarajan P,et al. Hematopoiesis of indeterminate potential and atherothrombotic risk [J]. Thromb Haemost,2022,122(9):1435-1442.
[8] Jaiswal S,Natarajan P,Silver AJ,et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease [J]. N Engl J Med,2017,377(2):111-121.
[9] Garcia-Outeiral V,de la Parte C,Fidalgo M,et al. The complexity of TET2 functions in pluripotency and development [J]. Front Cell Dev Biol,2020,8:630754.
[10] Fuster JJ,MacLauchlan S,Zuriaga MA,et al. Clonal hema- topoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice [J]. Science,2017,355(6327):842-847.
[11] Venugopal K,Feng Y,Shabashvili D,et al. Alterations to DNMT3A in hematologic malignancies [J]. Cancer Res,2021, 81(2):254-263.
[12] Cobo I,Tanaka T,Glass CK,et al. Clonal hematopoiesis driven by DNMT3A and TET2 mutations:role in monocyte and macrophage biology and atherosclerotic cardiovascular disease [J]. Curr Opin Hematol,2022,29(1):1-7.
[13] Wang Y,Liu X,Shi H,et al. NLRP3 inflammasome,an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases [J]. Clin Transl Med,2020,10(1):91-106.
[14] Groslambert M,Py BF. Spotlight on the NLRP3 inflammasome pathway [J]. J Inflamm Res,2018,11:359-374.
[15] Chen F,Chen ZQ,Zhong GL,et al. Nicorandil inhibits TLR4/MyD88/NF-kappaB/NLRP3 signaling pathway to reduce pyroptosis in rats with myocardial infarction [J]. Exp Biol Med(Maywood),2021,246(17):1938-1947.
[16] Li L,Jiang M,Qi L,et al. Pyroptosis,a new bridge to tumor immunity [J]. Cancer Sci,2021,112(10):3979-3994.
[17] He B,Nie Q,Wang F,et al. Role of pyroptosis in atherosclerosis and its therapeutic implications [J]. J Cell Physiol,2021,236(10):7159-7175.
[18] van Hout GP,Bosch L,Ellenbroek GH,et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction [J]. Eur Heart J,2017,38(11):828-836.
[19] Abplanalp WT,Cremer S,John D,et al. Clonal hematop- oiesis-driver DNMT3A mutations alter immune cells in heart failure [J]. Circ Res,2021,128(2):216-228.
[20] Xu YJ,Zheng L,Hu YW,et al. Pyroptosis and its relationship to atherosclerosis [J]. Clin Chim Acta,2018,476:28-37.
[21] Zeng X,Liu D,Huo X,et al. Pyroptosis in NLRP3 inflammasome-related atherosclerosis [J]. Cell Stress,2022,6(10):79-88.
[22] Qian Z,Zhao Y,Wan C,et al. Pyroptosis in the initiation and progression of atherosclerosis [J]. Front Pharmacol,2021, 12:652963.
[23] Yang Z,Shi J,Chen L,et al. Role of pyroptosis and ferroptosis in the progression of atherosclerotic plaques [J]. Front Cell Dev Biol,2022,10:811196.
[24] Bennett MR,Sinha S,Owens GK. Vascular smooth muscle cells in atherosclerosis [J]. Circ Res,2016,118(4):692-702.
[25] Uddin M,Nguyen N,Yu B,et al. Clonal hematopoiesis of indeterminate potential,DNA methylation,and risk for coronary artery disease [J]. Nat Commun,2022,13(1):5350.
[26] Bick AG,Pirruccello JP,Griffin GK,et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis [J]. Circulation,2020,141(2):124- 131.
[27] Dempsey C,Rubio AA,Bryson KJ,et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-beta and cognitive function in APP/PS1 mice [J]. Brain Behav Immun,2017,61:306-316.
[28] Zhang L,Jiang YH,Fan C,et al. MCC950 attenuates doxorubicin-induced myocardial injury in vivo and in vitro by inhibiting NLRP3-mediated pyroptosis [J]. Biomed Pharmacother,2021,143:112133.
[29] Coll RC,Robertson AA,Chae JJ,et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases [J]. Nat Med,2015,21(3):248-255.
[30] Zhang Y,Lv X,Hu Z,et al. Protection of Mcc950 against high-glucose-induced human retinal endothelial cell dysfunction [J]. Cell Death Dis,2017,8(7):e2941.
[31] Estruch R,Ros E,Salas-Salvado J,et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts [J]. N Engl J Med,2018,378(25):e34.
[32] Ma Q,Fan Q,Han X,et al. Platelet-derived extracellular vesicles to target plaque inflammation for effective anti-atherosclerotic therapy [J]. J Control Release,2021,329:445-453.
[33] Zeng W,Wu D,Sun Y,et al. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages [J]. Sci Rep,2021,11(1):19305.
[34] Byrne NJ,Matsumura N,Maayah ZH,et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure [J]. Circ Heart Fail,2020,13(1):e6277.
[1]
王莹1 殷豆豆1 巢楠2. 达格列净通过Caspase-1介导的细胞焦亡对糖尿病肾病小鼠肾损伤的影响 [J]. 中国医药导报, 2023, 20(8): 34-37.
[2]
李聪 高永红▲. 非高密度脂蛋白胆固醇水平与老年冠心病患者冠脉病变程度的相关性分析 [J]. 中国医药导报, 2023, 20(8): 66-69.
[3]
吴茜 李兰兰 曹琳琳 王师菡. 基于数据挖掘的痰瘀同治法治疗动脉粥样硬化的用药规律 [J]. 中国医药导报, 2023, 20(6): 119-122,144.
[4]
耿强1 张静静2 伊合山·艾尼瓦尔2 张冰2. 焦亡通路核因子κB/胱天蛋白酶-1在右美托咪定缓解糖尿病大鼠肾缺血再灌注后心肌易损性中的作用 [J]. 中国医药导报, 2023, 20(21): 25-28,34.
[5]
黄润芝1 曹长青2 李宇宁2. 细胞焦亡在新生儿缺氧缺血性脑病中的研究进展 [J]. 中国医药导报, 2023, 20(18): 56-60.
[6]
许绍廷 张赟建▲. 基于细胞焦亡相关lncRNA构建甲状腺癌的预后模型研究 [J]. 中国医药导报, 2023, 20(15): 12-17.
[7]
梁爽1 叶心雨1 杨军2 孙绍裘2. 基于CiteSpcae与VOSviewer对滑膜细胞与细胞焦亡研究趋势的可视化分析 [J]. 中国医药导报, 2023, 20(12): 19-24.
[8]
阳庆林1 谢犇1 杨杜斌1 王一坤1 秦庆庆1 王勇平2. 细胞焦亡在关节炎中的作用机制及研究进展 [J]. 中国医药导报, 2023, 20(1): 49-52,60.
[9]
汤紫薇 谷依檬 吴艳艳 杨琳 薛梅. 活血解毒Ⅰ号方抗动脉粥样硬化的网络药理学分析及实验验证 [J]. 中国医药导报, 2022, 19(33): 5-12,17.
[10]
王璨 侯焕喜 黄卫 刘红莉. 丁苯酞序贯疗法联合双抗血小板治疗急性脑梗死合并颈动脉粥样硬化患者的效果及对神经功能、血清Hcy、hs-CRP水平的影响 [J]. 中国医药导报, 2022, 19(32): 84-87.
[11]
蔡子纯 李纪明. 动脉僵硬度增加的发生机制及评估方法的研究进展 [J]. 中国医药导报, 2022, 19(30): 50-53,57.
[12]
魏佳明1 王子焱1 刘婷2 王建国2 郭志华2. NOX/ROS-NF-κB信号通路与动脉粥样硬化关系的研究进展 [J]. 中国医药导报, 2022, 19(24): 48-51.
[13]
薛文静 胡元会 杨一格 柴若宁 许荣荣. 基于CiteSpace的中医药治疗动脉粥样硬化的文献计量及可视化分析 [J]. 中国医药导报, 2022, 19(19): 16-19,24.
[14]
史丽1 任卫东1 王立坤2 李朝喜2 张志英1 邓文娟1 胡利梅1 左丽娟1. 老年男性糖尿病患者骨质疏松与颈动脉粥样硬化的相关性研究 [J]. 中国医药导报, 2022, 19(18): 20-23.
[15]
李兰石1 王颖2. 基于细胞焦亡的中药治疗抑郁症合并冠心病的机制研究进展 [J]. 中国医药导报, 2022, 19(18): 38-41.