细胞焦亡在新生儿缺氧缺血性脑病中的研究进展
黄润芝1 曹长青2 李宇宁2
1.兰州大学第一临床医学院,甘肃兰州 730000;
2.兰州大学第一医院儿科,甘肃兰州 730000
Research advances in the role of pyroptosis in neonatal hypoxic-ischemic encephalopathy
HUANG Runzhi1 CAO Changqing2 LI Yuning2
1.The First Clinical Medical College, Lanzhou University, Gansu Province, Lanzhou 730000, China;
2.Department of Pediatric, the First Hospital of Lanzhou University, Gansu Province, Lanzhou 730000, China
摘要 新生儿缺氧缺血性脑病(HIE)是新生儿最常见的神经系统病变之一,具有致残率、死亡率高的特点,且目前临床上尚无特异性治疗手段。大量研究数据表明,炎症的激活和扩散是新生儿HIE发生发展的主要原因,而细胞焦亡作为近年新发现的一种炎症细胞死亡模式,受到人们的广泛关注。关于细胞焦亡与新生儿HIE的研究逐年增多,大量的数据表明细胞焦亡是新生儿HIE的重要致损机制。本文围绕细胞焦亡和新生儿HIE的研究进展进行综述。
关键词 :
新生儿 ,
缺氧缺血性脑病 ,
细胞焦亡 ,
炎症
Abstract :Hypoxic-ischemic encephalopathy (HIE) is the leading cause of disability and death in neonatal, which has been a major health concern worldwide. At present, there is still a lack of satisfactory treatment for HIE, which is a great threat to children’s health and quality of life. Mutiple researches have shown that the activation and diffusion of inflammation is the main reason for the occurrence and development of HIE. Pyroptosis is a relatively recently described mechanism of inflammatory cell death that is closely related to HIE. The study on pyroptosis and HIE is increasing year by year. This paper summarizes the pivotal role of pyroptosis in HIE and analysis the related mechanisms to provide a basis for future research.
Key words :
Neonatal
Hypoxic-ischemic encephalopathy
Pyroptosis
Inflammation
基金资助: 甘肃省教育厅科技创新基金项目(2022B-024)。
通讯作者:
李宇宁(1962-),男,教授,主任医师;研究方向:儿童肾脏疾病。
作者简介 : 黄润芝(1996-),女,兰州大学第一临床医学院2020级儿科学专业在读硕士研究生;研究方向:儿童神经疾病。
[1] Tetorou K,Sisa C,Iqbal A,et al. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage [J]. Front Synaptic Neurosci,2021,13:709301.
[2] Yu P,Zhang X,Liu N,et al. Pyroptosis:mechanisms and dis- eases [J]. Signal Transduct Target Ther,2021,6(1):128.
[3] Zychlinsky A,Prevost MC,Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages [J]. Nature,1992, 358(6382):167-169.
[4] Kovacs SB,Miao EA. Gasdermins:Effectors of Pyroptosis [J]. Trends Cell Biol,2017,27(9):673-684.
[5] Zhou Z,He H,Wang K,et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells [J]. Science,2020,368(6494).
[6] Shi J,Zhao Y,Wang K,et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death [J]. Nature,2015,526(7575):660-665.
[7] Wang Y,Gao W,Shi X,et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin [J]. Nature,2017,547(7661):99-103.
[8] Hou J,Hsu JM,Hung MC. Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity [J]. Mol Cell,2021,81(22):4579-4590.
[9] Mamun AA,Wu Y,Nasrin F,et al. Role of Pyroptosis in Diabetes and Its Therapeutic Implications [J]. J Inflamm Res,2021,14:2187-2206.
[10] Fang Y,Tian S,Pan Y,et al. Pyroptosis:A new frontier in cancer [J]. Biomed Pharmacother,2020,121:109595.
[11] Burdette BE,Esparza AN,Zhu H,et al. Gasdermin D in pyroptosis [J]. Acta Pharm Sin B,2021,11(9):2768-2782.
[12] Fink SL,Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages [J]. Cell Microbiol,2006,8(11):1812-1825.
[13] Kesavardhana S,Malireddi R,Kanneganti TD. Caspases in Cell Death,Inflammation,and Pyroptosis [J]. Annu Rev Immunol,2020,38:567-595.
[14] Broz P,Ruby T,Belhocine K,et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1 [J]. Nature,2012,490(7419):288-291.
[15] Nabetani M,Shintaku H,Hamazaki T. Future perspectives of cell therapy for neonatal hypoxic-ischemic encephalopathy [J]. Pediatr Res,2018,83(1/2):356-363.
[16] Wang L,Ren W,Wu Q,et al. NLRP3 Inflammasome Activation:A Therapeutic Target for Cerebral Ischemia-Reperfusion Injury [J]. Front Mol Neurosci,2022,15:847440.
[17] Wu X,Wan T,Gao X,et al. Microglia Pyroptosis:A Candidate Target for Neurological Diseases Treatment [J]. Front Neurosci,2022,16:922331.
[18] Fann DY,Lee SY,Manzanero S,et al. Intravenous immu- noglobulin suppresses NLRP1 and NLRP3 inflammasome- mediated neuronal death in ischemic stroke [J]. Cell Death Dis,2013,4(9):e790.
[19] Zhu JJ,Yu BY,Huang XK,et al. Neferine Protects against Hypoxic-Ischemic Brain Damage in Neonatal Rats by Supp- ressing NLRP3-Mediated Inflammasome Activation [J]. Oxid Med Cell Longev,2021,2021:6654954.
[20] Bernis ME,Schleehuber Y,Zweyer M,et al. Temporal Char- acterization of Microglia-Associated Pro-and Anti-Inflammatory Genes in a Neonatal Inflammation-Sensitized Hypoxic-Ischemic Brain Injury Model [J]. Oxid Med Cell Lon- gev, 2022,2022:2479626.
[21] Liu J,Ma W,Zang CH,et al. Salidroside inhibits NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway [J]. Ann Transl Med,2021,9(22):1694.
[22] Lv Y,Sun B,Lu XX,et al. The role of microglia mediated pyroptosis in neonatal hypoxic-ischemic brain damage [J]. Biochem Biophys Res Commun,2020,521(4):933-938.
[23] Serdar M,Kempe K,Herrmann R,et al. Involvement of CXCL1/CXCR2 During Microglia Activation Following Inflammation-Sensitized Hypoxic-Ischemic Brain Injury in Neonatal Rats [J]. Front Neurol,2020,11:540878.
[24] Dani C,Pratesi S,Ranieri G,et al. Changes of Oxidative Stress-Related Gene Expression in an in vitro Model of Neonatal Hypoxic-Ischemic Encephalopathy [J]. Neonatol ogy,2022,119(5):611-618.
[25] Zhao C,Gillette DD,Li X,et al. Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflamma- some activation [J]. J Biol Chem,2014,289(24):17020- 17029.
[26] Xing Z,Zhen T,Jie F,et al. Early Toll-like receptor 4 inhibition improves immune dysfunction in the hippocampus after hypoxic-ischemic brain damage [J]. Int J Med Sci,2022, 19(1):142-151.
[27] Fann DY,Lim YA,Cheng YL,et al. Evidence that NF-κB and MAPK Signaling Promotes NLRP Inflammasome Activation in Neurons Following Ischemic Stroke [J]. Mol Neurobiol,2018,55(2):1082-1096.
[28] Jiang Q,Geng X,Warren J,et al. Hypoxia Inducible Factor-1α (HIF-1α) Mediates NLRP3 Inflammasome-Dependent-Pyroptotic and Apoptotic Cell Death Following Ischemic Stroke [J]. Neuroscience,2020,448:126-139.
[29] Dempsey C,Rubio AA,Bryson KJ,et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice [J]. Brain Behav Immun,2017,61:306-316.
[30] Zhao M,Dai Y,Li P,et al. Inhibition of NLRP3 inflammasome activation and pyroptosis with the ethyl acetate fraction of Bungeanum ameliorated cognitive dysfunction in aged mice [J]. Food Funct,2021,12(21):10443-10458.
[31] Tufekci KU,Eltutan BI,Isci KB,et al. Resveratrol Inhibits NLRP3 Inflammasome-Induced Pyroptosis and miR-155 Expression in Microglia Through Sirt1/AMPK Pathway [J]. Neurotox Res,2021,39(6):1812-1829.
[32] Rui W,Li S,Xiao H,et al. Baicalein Attenuates Neuroinflammation by Inhibiting NLRP3/caspase-1/GSDMD Pathway in MPTP Induced Mice Model of Parkinson’s Disease [J]. Int J Neuropsychopharmacol,2020,23(11):762-773.
[33] Han X,Xu T,Fang Q,et al. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy [J]. Redox Biol,2021,44:102010.
[34] Lv X,Fan C,Jiang Z,et al. Isoliquiritigenin alleviates P. gingivalis-LPS/ATP-induced pyroptosis by inhibiting NF- κB/NLRP3/GSDMD signals in human gingival fibroblasts [J]. Int Immunopharmacol,2021,101(Pt B):108338.
[35] Lin X,Ye H,Siaw-Debrah F,et al. AC-YVAD-CMK Inhibits Pyroptosis and Improves Functional Outcome after Intracerebral Hemorrhage [J]. Biomed Res Int,2018,2018:3706047.
[36] Sun Z,Nyanzu M,Yang S,et al. VX765 Attenuates Pyroptosis and HMGB1/TLR4/NF-κB Pathways to Improve Fun- ctional Outcomes in TBI Mice [J]. Oxid Med Cell Longev,2020,2020:7879629.
[37] Tian DD,Wang M,Liu A,et al. Antidepressant Effect of Paeoniflorin Is Through Inhibiting Pyroptosis CASP-11/ GSDMD Pathway [J]. Mol Neurobiol,2021,58(2):761-776.
[38] Han C,Yang Y,Yu A,et al. Investigation on the mechanism of mafenide in inhibiting pyroptosis and the release of inflammatory factors [J]. Eur J Pharm Sci,2020,147:105303.
[39] Esmaeili-Mahani S,Haghparast E,Nezhadi A,et al. Ape- lin-13 prevents hippocampal synaptic plasticity impairment in Parkinsonism rats [J]. J Chem Neuroanat,2021, 111:101884.
[40] Xia L,Liu L,Cai Y,et al. Inhibition of Gasdermin D-Mediated Pyroptosis Attenuates the Severity of Seizures and Astroglial Damage in Kainic Acid-Induced Epileptic Mice [J]. Front Pharmacol,2021,12:751644.
[1]
孟宪宇 程云 吕志刚 侯为林. 浮针联合循经针刺治疗腰椎间盘突出症的临床效果 [J]. 中国医药导报, 2023, 20(9): 93-96.
[2]
程芳1 胡坤敏1 朱珊2. 活血化瘀类中药抗炎机制研究进展 [J]. 中国医药导报, 2023, 20(8): 46-49,65.
[3]
王莹1 殷豆豆1 巢楠2. 达格列净通过Caspase-1介导的细胞焦亡对糖尿病肾病小鼠肾损伤的影响 [J]. 中国医药导报, 2023, 20(8): 34-37.
[4]
李维娜1 缪辉1 王立芳1 董萍1 尹会苏1 李静2 王俏2. 中药熏蒸联合耳穴贴压对2型糖尿病相关干眼患者的临床疗效及炎症反应的影响 [J]. 中国医药导报, 2023, 20(8): 158-162.
[5]
王丽伟1 周志庆2. 针对性全方位护理干预在光疗新生儿高胆红素血症患儿中的应用效果 [J]. 中国医药导报, 2023, 20(8): 163-166.
[6]
张同庆 王明 赵轩宇 姜海利. B族溶血性链球菌带菌孕妇不同分娩方式对新生儿感染的影响及相关影响因素分析 [J]. 中国医药导报, 2023, 20(6): 104-107.
[7]
田艳艳 杨妮 李宁▲. 发育支持性护理联合标准化微量喂养支持对喂养不耐受新生儿喂养进程及生长发育的影响 [J]. 中国医药导报, 2023, 20(6): 173-176.
[8]
卢冬彦 叶小卫. 参芪化瘀方联合经导管动脉化疗栓塞治疗原发性肝癌患者的效果 [J]. 中国医药导报, 2023, 20(5): 98-101,110.
[9]
刘艳萍1 李可成1 黄婷1 谢梦月1 潘莉珍2 陈大宇2. 广西壮族自治区柳州市壮族高胆红素血症新生儿G6PD缺陷及基因突变特点分析 [J]. 中国医药导报, 2023, 20(3): 29-32.
[10]
赵景宏1 乔彦2 张荣驿1 邓建平1 陈勇1. 重症心力衰竭患者血清CXCL16、sST2水平变化及其与预后的关系 [J]. 中国医药导报, 2023, 20(2): 56-59.
[11]
郑春东1 黄秋环2▲ 黄芬3 陆柳雪2 王淑娴3 黎青云4 唐强3 覃媚3. 基于罗伊适应模式对老年烧伤患者护理的干预研究 [J]. 中国医药导报, 2023, 20(19): 178-181.
[12]
万荣1 沈赟2 王魁3 沈志英4 杨政1▲. 脐动脉血气分析联合超声Tei指数在新生儿窒息诊断中的应用 [J]. 中国医药导报, 2023, 20(18): 100-103.
[13]
刘晶 董红宾 田梦婷 赵景瑶. 康复新液对中度慢性牙周炎患者的影响 [J]. 中国医药导报, 2023, 20(18): 116-119.
[14]
薛瑞君1 李文平2 黄蔚喆3 潘树义1 郭大志1. 高压氧对成年缺氧缺血性脑病大鼠白质损伤的作用机制 [J]. 中国医药导报, 2023, 20(17): 26-30.
[15]
许杰 王晖 温洪 张舰. 异丙酚对缺氧/复氧诱导PC12细胞损伤的影响及其分子机制 [J]. 中国医药导报, 2023, 20(16): 31-36.