周细胞-内皮细胞Crosstalk在心肌缺血后微血管新生中的研究进展
刘艺旋1 汤凯璇2 李奕潼1 周煊程2 刘怡然1 李超3
1.山东中医药大学中医学院,山东济南 250355;
2.山东中医药大学医学院,山东济南 250355;
3.山东中医药大学中医药创新研究院,山东济南 250355
Research progress on pericyte-endothelial cell Crosstalk in micro angiogenesis after myocardial ischemia
LIU Yixuan1 TANG Kaixuan2 LI Yitong1 ZHOU Xuancheng2 LIU Yiran1 LI Chao3
1.College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong Province, Jinan 250355, China;
2.College of Medicine, Shandong University of Traditional Chinese Medicine, Shandong Province, Jinan 250355, China;
3.Institute of innovation in Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong Province, Jinan 250355, China
摘要 心血管疾病是世界公共卫生问题,是人类主要的死亡原因之一。治疗性血管新生能够有效减轻心肌缺血损伤并改善心功能,已成为心肌缺血后重要的补充治疗策略。周细胞-内皮细胞Crosstalk对心肌缺血后微血管新生的调控机制主要包括周细胞通过血管基底膜直接接触内皮细胞和旁分泌调节两种模式。其中,旁分泌调节主要通过促血管新生细胞因子和激活多种信号通路,以促进微血管新生和成熟,对稳定血管/血液系统及改善心脏功能等具有重要作用,因此,周细胞-内皮细胞Crosstalk是心肌缺血后微血管新生的关键环节。本文综述了周细胞-内皮细胞Crosstalk在心肌缺血后微血管新生中的机制及作用,以期为心肌缺血的补充治疗方案提供思路。
关键词 :
周细胞-内皮细胞Crosstalk ,
微血管新生 ,
旁分泌调节 ,
作用机制
Abstract :Cardiovascular disease is a world public health problem and one of the main causes of human death. Therapeutic angiogenesis can effectively alleviate myocardial ischemia injury and improve cardiac function, which has become an important supplementary treatment strategy after myocardial ischemia. The regulation mechanism of pericyte-endothelial cell Crosstalk on micro angiogenesis after myocardial ischemia mainly includes pericyte contact with endothelial cells through vascular basement membrane and paracrine regulation. Paracrine regulation plays an important role in stabilizing blood vessel/blood system, and improving cardiac function by promoting angiogenesis cytokines, and activating various signal pathways to promote angiogenesis and maturation. Therefore, pericyte-endothelial cell Crosstalk is the key link of micro angiogenesis after myocardial ischemia. This paper reviews the mechanism and role of pericyte-endothelial cell Crosstalk in micro angiogenesis after myocardial ischemia in order to provide ideas for complementary treatment of myocardial ischemia.
Key words :
Pericyte-endothelial cell Crosstalk
Micro angiogenesis
Paracrine regulation
Mechanism of action
基金资助: 国家自然科学基金资助项目(82004276);
省级大学生创新训练计划项目(S202210441019)。
通讯作者:
李超(1990.9-),男,博士,博士后,副教授,硕士生导师;研究方向:心血管病理和药理研究。
[1] Zhai S,Zhang XF,Lu F,et al. Chinese medicine GeGen-DanShen extract protects from myocardial ischemic injury through promoting angiogenesis via up-regulation of VEGF/ VEGFR2 signaling pathway [J]. J Ethnopharmacol,2021,267: 113475.
[2] Quijada P,Trembley MA,Small EM. The Role of the Epicardium During Heart Development and Repair [J]. Circ Res,2020,126(3):377-394.
[3] Payne LB,Zhao H,James CC,et al. The pericyte microenvironment during vascular development [J]. Microcirculation,2019,26(8):e12554.
[4] Cossutta M,Darche M,Carpentier G,et al. Weibel-Palade Bodies Orchestrate Pericytes During Angiogenesis [J]. Arterioscler Thromb Vasc Biol,2019,39(9):1843-1858.
[5] Zonneville J,Safina A,Truskinovsky AM,et al. TGF-β signaling promotes tumor vasculature by enhancing the pericyte-endothelium association [J]. BMC Cancer,2018,18(1): 1-13.
[6] Li Y,Sun R,Zou J,et al. Dual Roles of the AMP-Activated Protein Kinase Pathway in Angiogenesis [J]. Cells,2019,8(7):1-16.
[7] Carbone C,Piro G,Merz V,et al. Angiopoietin-like proteins in angiogenesis,inflammation and cancer [J]. Int J Mol Sci,2018,19(2):1-22.
[8] Polacheck WJ,Kutys ML,Yang J,et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function [J]. Nature,2017,552(7684):258-262.
[9] Bai J,Khajavi M,Sui L,et al. Angiogenic responses in a 3D micro-engineered environment of primary endothelial cells and pericytes [J]. Angiogenesis,2021,24(1):111-127.
[10] Braile M,Marcella S,Cristinziano L,et al. VEGF-A in car- diomyocytes and heart diseases [J]. Int J Mol Sci,2020, 21(15):1-18.
[11] Tanaka K,Watanabe M,Tanigaki S,et al. Tumor necrosis factor-α regulates angiogenesis of BeWo cells via synergy of PlGF/VEGFR1 and VEGF-A/VEGFR2 axes [J]. Place- nta,2018,74:20-27.
[12] Eilken HM,Diéguez-Hurtado R,Schmidt I,et al. Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1 [J]. Nat Commun,2017,8(1):1-14.
[13] Caporale A,Martin AD,Capasso D,et al. Short PlGF-derived peptides bind VEGFR-1 and VEGFR-2 in vitro and on the surface of endothelial cells [J]. J Pept Sci,2019, 25(5):e3146.
[14] Kalra K,Eberhard J,Farbehi N,et al. Role of PDGF-A/B Ligands in Cardiac Repair After Myocardial Infarction [J]. Front Cell Dev Biol,2021,9:669188.
[15] Mamer SB,Chen S,Weddell JC,et al. Author correction:discovery of high-affinity PDGF-VEGFR interactions:redefining RTK dynamics [J]. Sci Rep,2020,10(1):1-2.
[16] Farbehi N,Patrick R,Dorison A,et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal,vascular and immune cells in health and injury [J]. Elife,2019, 8:e43882.
[17] Kisler K,Nelson AR,Rege SV,et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain [J]. Nat Neurosci,2017,20(3):406-416.
[18] Luo W,Gong Y,Qiu F,et al. NGF nanoparticles enhance the potency of transplanted human umbilical cord mesenchymal stem cells for myocardial repair [J]. Am J Physiol Heart Circ Physiol,2021,320(5):H1959-H1974.
[19] Jia T,Jacquet T,Dalonneau F,et al. FGF-2 promotes angiogenesis through a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells [J]. BMC Biol,2021,19(1):1-26.
[20] Xie Y,Su N,Yang J,et al. FGF/FGFR signaling in health and disease [J]. Signal Transduct Target Ther,2020,5(1):1-38.
[21] Hossain MA,Adithan A,Alam MJ,et al. IGF-1 Facilitates Cartilage Reconstruction by Regulating PI3K/AKT,MAPK,and NF-kB Signaling in Rabbit Osteoarthritis [J]. J Inflamm Res,2021,14:3555-3568.
[22] Yan L,He X,Tang Y,et al. HGF can reduce accumulation of inflammation and regulate glucose homeostasis in T2D mice [J]. J Physiol Biochem,2021,77(4):613-624.
[23] Xiang Y,Yao X,Wang X,et al. Houshiheisan promotes angiogenesis via HIF-1α/VEGF and SDF-1/CXCR4 path- ways:in vivo and in vitro [J]. Biosci Rep,2019,39(10): BSR 20191006.
[24] Rathjen T,Kunkemoeller B,Cederquist CT,et al. Endothelial Cell Insulin Signaling Regulates CXCR4 (C-X-C Motif Chemokine Receptor 4) and Limits Leukocyte Adhesion to Endothelium [J]. Arterioscler Thromb Vasc Biol,2022,42(7): e217-e227.
[25] Dimova I,Karthik S,Makanya A,et al. SDF-1/CXCR4 signalling is involved in blood vessel growth and remodelling by intussusception [J]. J Cell Mol Med,2019,23(6):3916- 3926.
[26] Huang X,Mao W,Zhang T,et al. Baicalin promotes apoptosis and inhibits proliferation and migration of hypoxia-induced pulmonary artery smooth muscle cells by up-regulating A2a receptor via the SDF-1/CXCR4 signaling pathway [J]. BMC Complement Altern Med,2018,18(1):1-13.
[27] Li ZH,Wang YL,Wang HJ,et al. Rapamycin-Preactivated Autophagy Enhances Survival and Differentiation of Mesenchymal Stem Cells After Transplantation into Infarcted Myocardium [J]. Stem Cell Rev Rep,2020,16(2):344- 356.
[28] Su H,Cantrell AC,Zeng H,et al. Emerging role of pericytes and their secretome in the heart [J]. Cells,2021,10(3): 548.
[29] An D,Chung-Wah-Cheong J,Yu D Y,et al. Alpha-Smooth Muscle Actin Expression and Parafoveal Blood Flow Pathways Are Altered in Preclinical Diabetic Retinopathy [J]. Invest Ophthalmol Vis Sci,2022,63(5):1-16.
[30] Aslam M,Gündüz D,Troidl C,et al. Purinergic regulation of endothelial barrier function [J]. Int J Mol Sci,2021,22(3):1207.
[31] Zhou Q,Tu T,Tai S,et al. Endothelial specific deletion of HMGB1 increases blood pressure and retards ischemia recovery through eNOS and ROS pathway in mice [J]. Redox Biol,2021,41:101890.
[32] Ashraf JV,Al Haj Zen A. Role of Vascular Smooth Muscle Cell Phenotype Switching in Arteriogenesis [J]. Int J Mol Sci,2021,22(19):10585.
[33] Tsuchiya T,Doi R,Obata T,et al. Lung microvascular niche,repair,and engineering [J]. Front Bioeng Biotechnol,2020, 8:1-19.
[34] Avolio E,Katare R,Thomas AC,et al. Cardiac pericyte reprogramming by MEK inhibition promotes arteriologenesis and angiogenesis of the ischemic heart [J]. J Clin Invest, 2022,132(10):e152308.
[35] Costa MA,Paiva AE,Andreotti JP,et al. Pericytes constrict blood vessels after myocardial ischemia [J]. J Mol Cell Cardiol,2018,116:1-4.
[1]
孙宜斌1 朱铭星2 刘跃洋3 赵若玮1 黄鸣清1 程再兴1 郑燕芳1 林彦翔1. 中药抗肝损伤机制的研究进展 [J]. 中国医药导报, 2023, 20(9): 38-40,45.
[2]
孟思璇1 姚兴梅1 吴歆叶1 李兆东2 王浩1. 黄芪有效成分治疗糖尿病肾病的机制研究进展 [J]. 中国医药导报, 2023, 20(4): 60-63.
[3]
高长久1 丁崧1 卢芳2 柳长凤2 于栋华2 刘树民2. 基于网络药理学结合动物实验探究芪玄抑甲宁治疗格雷夫斯病的作用机制 [J]. 中国医药导报, 2023, 20(3): 9-14.
[4]
高诗宇1 吴力群2 李盼盼1 路晨1 张宁宁1 王宝盛1. 基于数据挖掘及网络药理学探讨吴力群教授治疗小儿抽动障碍用药规律及作用机制 [J]. 中国医药导报, 2023, 20(2): 4-10.
[5]
向文远1 易林1 邓迎杰2 方锐2▲. 基于网络药理学和实验验证探讨补肾痹通方治疗膝骨关节炎的作用机制 [J]. 中国医药导报, 2023, 20(15): 27-34.
[6]
颜涛1 谷佳1 朱能2 石雅宁1 张婵娟1 李洪芳1 覃丽1. 基于网络药理学和实验验证雷公藤红素治疗肾癌的作用及机制 [J]. 中国医药导报, 2023, 20(14): 4-10.
[7]
闭婉英1 王万平1 龙涌文1 唐石伏2▲. 环状RNA在病毒复制中作用机制的研究进展 [J]. 中国医药导报, 2023, 20(14): 56-59.
[8]
王少男1 张韵琦1 景松松1 郑玉光2 孙志勇3. 萱草花抗焦虑作用及其机制研究 [J]. 中国医药导报, 2023, 20(10): 28-31.
[9]
贺玉慧1 朱铭星2 刘跃洋3 赵若玮1 黄鸣清1 施红4 郑燕芳1 林彦翔1. 姜黄素与白藜芦醇治疗非酒精性脂肪性肝病的机制研究进展 [J]. 中国医药导报, 2023, 20(1): 57-60.
[10]
解小慧1 刘金星2. 基于网络药理学研究补肾安坤汤治疗早发性卵巢功能不全的作用机制 [J]. 中国医药导报, 2022, 19(9): 31-36.
[11]
牛尚梅1 宋潇萌1 张晓杰1 杨英焘2 郭会军2 韩世超1. 恩格列净联合二甲双胍治疗2型糖尿病的效果 [J]. 中国医药导报, 2022, 19(6): 76-80.
[12]
赵廷尧 徐燕. 人参皂苷防治心肌梗死相关作用机制的研究进展 [J]. 中国医药导报, 2022, 19(4): 49-51,61.
[13]
吴新新1 沈童1 周亚博1 张雨1 杨俊红2. 中医药对重症肌无力相关细胞因子调控机制研究进展 [J]. 中国医药导报, 2022, 19(35): 45-48.
[14]
魏乐 国凤琴 魏玉锁 赵晓明. 中医医疗技术治疗2型糖尿病的研究进展 [J]. 中国医药导报, 2022, 19(31): 61-64.
[15]
高晓斌 武雪亮 赵轶峰 聂双发 梁峰 张迎春. piR-128通过DNA甲基化酶3B对结直肠癌的调节作用及诊断价值 [J]. 中国医药导报, 2022, 19(28): 11-16,32.