microRNA在不同类型骨骼肌萎缩中的研究进展
肖雅 洪莉 李素廷 陈茂 黄筱雨 朱芳谊
武汉大学人民医院妇产科,湖北武汉 430060
Research progress of microRNA in different types of skeletal muscle atrophy
XIAO Ya HONG Li LI Suting CHEN Mao HUANG Xiaoyu ZHU Fangyi
Department of Gynecology and Obstetrics, People’s Hospital of Wuhan University, Hubei Province, Wuhan 430060, China
摘要 骨骼肌萎缩是指骨骼肌质量的减少及肌肉功能的降低,去神经、衰老及慢性阻塞性肺疾病、癌症等各种疾病均可诱发骨骼肌萎缩,从而导致患者生活质量下降,死亡风险增加。然而,肌肉萎缩的潜在机制尚不完全清楚。微RNA(miRNA)是一类由内源性基因编码的非编码单链RNA分子,参与多种生理和病理过程,包括细胞增殖、分化、凋亡、自噬及肿瘤发生,甚至表观遗传。近年来关于miRNA在骨骼肌萎缩中的研究越来越多,miRNA有望成为骨骼肌萎缩诊断与治疗的新分子靶标。本文就miRNA在不同类型骨骼肌萎缩中的作用研究进展进行综述。
关键词 :
微RNA ,
骨骼肌萎缩 ,
去神经 ,
衰老
Abstract :Skeletal muscle atrophy refers to the decrease of skeletal muscle quality and muscle function. Denervation, aging, chronic obstructive pulmonary disease, cancer, and other diseases can induce skeletal muscle atrophy, resulting in a decline in the quality of life of patients and an increased risk of death. However, the underlying mechanism of muscle atrophy is not fully understood. microRNA (miRNA) is a class of non-coding single-stranded RNA molecules encoded by endogenous genes, which are involved in a variety of physiological and pathological processes, including cell proliferation, differentiation, apoptosis, autophagy, tumorigenesis, and even epigenetics. In recent years, there are more and more studies on miRNA in skeletal muscle atrophy, and miRNA is expected to become a new molecular target for the diagnosis and treatment of skeletal muscle atrophy. This article reviews the research progress on the role of miRNA in different types of skeletal muscle atrophy.
Key words :
MicroRNA
Skeletal muscle atrophy
Denervation
Aging
基金资助: 国家重点研发计划项目(2021YFC2701302);
国家自然科学基金面上项目(81971364);
湖北省第二届医学领军人才工程(鄂卫通〔2019〕47号)。
通讯作者:
洪莉(1970.4-),女,博士,一级主任医师,博士生导师;研究方向:盆底功能障碍性疾病及妇科肿瘤。
作者简介 : 肖雅(1997.1-),女,武汉大学第一临床学院2020级妇产科专业在读硕士研究生;研究方向:盆底功能障碍性疾病及妇科肿瘤。
[1] Bethune J,Artus-Revel CG,Filipowicz W. Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells [J]. EMBO Rep,2012,13(8):716- 723.
[2] 李德深,卢健,陈彩珍.肌肉特异性microRNA功能及运动对其影响的研究进展[J].中国运动医学杂志,2011,30(7):685-690.
[3] Ding S,Dai Q,Huang H,et al. An Overview of Muscle Atrophy [J]. Adv Exp Med Biol,2018,1088:3-19.
[4] Wang F,Wang J,He J,et al. Serum miRNAs miR-23a,206,and 499 as Potential Biomarkers for Skeletal Muscle Atrophy [J]. Biomed Res Int,2017,2017:1-9.
[5] Ehrnsen JT,H?觟ke A. Cellular and molecular features of neurogenic skeletal muscle atroph [J]. Exp Neurol,2020,331:113-201.
[6] Soares RJ,Cagnin S,Chemello F,et al. Involvement of MicroRNAs in the Regulation of Muscle Wasting during Catabolic Conditions [J]. J Biol Chem,2014,289(32):21909- 21925.
[7] Weng J,Zhang P,Yin X,et al. The Whole Transcriptome Involved in Denervated Muscle Atrophy Following Peripheral Nerve Injury [J]. Front Mol Neurosci,2018,11:69.
[8] Jin B,Gu X,Li D,et al. Effects of miR-34c-5p on Sodium,Potassium,and Calcium Channel Currents in C2C12 Myotubes [J]. Cell Mol Neurobiol,2020,40(7):1223-1230.
[9] Gu X,Jin B,Qi Z,et al. MicroRNA is a potential target for therapies to improve the physiological function of skeletal muscle after trauma [J]. Neural Regen Res,2022,17(7):16- 17.
[10] Jurkat-Rott K,Mitrovic N,Hang C,et al. Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current [J]. Proc Natl Acad Sci U S A,2000,97(17):9549- 9554.
[11] Yang X,Xue P,Chen H,et al. Denervation drives skeletal muscle atrophy and induces mitochondrial dysfunction,mitophagy and apoptosis via miR-142a-5p/MFN1 axis [J]. Theranostics,2020,10(3):1415-1432.
[12] Narici MV,Maffulli N. Sarcopenia:characteristics,mechanisms and functional significance [J]. Br Med Bull,2010, 95(1):139-159.
[13] Hamrick MW,Herberg S,Arounleut P,et al. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice [J]. Biochem Biophys Res Commun,2010,400(3):379-383.
[14] Drummond MJ,Mccarthy JJ,Sinha M,et al. Aging and microRNA expression in human skeletal muscle:a microarray and bioinformatics analysis [J]. Physiol Genomics,2011,43(10):595-603.
[15] Mercken EM,Majounie E,Ding J,et al. Age-associated miRNA alterations in skeletal muscle from rhesus monkeys reversed by caloric restriction [J]. Aging(Albany,NY),2013,5(9):692-703.
[16] Fry CS,Drummond MJ,Glynn EL,et al. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis [J]. Skelet Muscle,2011,1(1):11.
[17] Kumar V,Selby A,Rankin D,et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men [J]. J Physiol,2009,587(1):211-217.
[18] Zacharewicz E,Della Gatta P,Reynolds J,et al. Identification of MicroRNAs Linked to Regulators of Muscle Protein Synthesis and Regeneration in Young and Old Skeletal Muscle [J]. PLoS One,2014,9(12):e114009.
[19] Goljanek-Whysall K,Soriano-Arroquia A,Mccormick R,et al. miR-181a regulates p62/SQSTM1,parkin,and protein DJ-1 promoting mitochondrial dynamics in skeletal muscle aging [J]. Aging Cell,2020,19(4):e13140.
[20] Soriano-Arroquia A,Gostage J,Xia Q,et al. miR-24 and its target gene Prdx6 regulate viability and senescence of myogenic progenitors during aging [J]. Aging Cell,2021,20(10):e13475.
[21] Kalu■niak-Szymanowska A,Krzymińska-Siemaszko R,Deskur-■mielecka E,et al. Malnutrition,Sarcopenia,and Malnutrition-Sarcopenia Syndrome in Older Adults with COPD [J]. Nutrients,2022,14(1):44.
[22] Fernández-Pombo A,Rodríguez-Carnero G,Castro AI,et al. Relevance of nutritional assessment and treatment to counteract cardiac cachexia and sarcopenia in chronic heart failure [J]. Clin Nutr,2021,40(9):5141-5155.
[23] Engelhardt LJ,Grunow JJ,Wollersheim T,et al. Sex-Specific Aspects of Skeletal Muscle Metabolism in the Clinical Context of Intensive Care Unit-Acquired Weakness [J]. J Clin Med,2022,3(11):846.
[24] Connolly M,Paul R,Farre-Garros R,et al. miR-424-5p reduces ribosomal RNA and protein synthesis in muscle wasting [J]. J Cachexia Sarcopenia Muscle,2018,9(2):400- 416.
[25] Qaisar R,Karim A,Muhammad T,et al. Circulating MicroRNAs as Biomarkers of Accelerated Sarcopenia in Chronic Heart Failure [J]. Glob Heart,2021,16(1):56.
[26] Garros RF,Paul R,Connolly M,et al. MicroRNA-542 Promotes Mitochondrial Dysfunction and SMAD Activity and Is Elevated in Intensive Care Unit-acquired Weakness [J]. Am J Respir Crit Care Med,2017,196(11):1422-1433.
[27] Giarratana N,Conti F,La Rovere R,et al. MICAL2 is essential for myogenic lineage commitment [J]. Cell Death Dis,2020,11(8):654.
[28] Giacomazzi G,Holvoet B,Trenson S,et al. MicroRNAs promote skeletal muscle differentiation of mesodermal iPSC- derived progenitors [J]. Nat Commun,2017,8(1):1249.
[29] Ronzoni F,Ceccarelli G,Perini I,et al. Met-Activating Genetically Improved Chimeric Factor-1 Promotes Angio- genesis and Hypertrophy in Adult Myogenesis [J]. Curr Pharm Biotechnol,2017,6(18):309-317.
[30] Pozzo E,Giarratana N,Sassi G,et al. Upregulation of miR181a/ miR212 Improves Myogenic Commitment in Murine Fusion-Negative Rhabdomyosarcoma [J]. Front Physiol,2021, 12(16):135-176.
[31] Zhang L,Liao Y,Tang L. MicroRNA-34 family:a potential tumor suppressor and therapeutic candidate in cancer [J]. J Exp Clin Cancer Res,2019,38(1):53.
[32] Wang X,He Y,Mackowiak B,et al. MicroRNAs as regulators,biomarkers and therapeutic targets in liver diseases [J]. Gut,2021,70(4):784-795.
[1]
杨艳1 徐院生2 付丹妹2 刘国印2▲. 微RNA与骨肉瘤相关性的研究进展 [J]. 中国医药导报, 2023, 20(1): 45-48.
[2]
周海婷 赵瑜 邱影. 喉癌组织中miR-340-5p、c-Myc、TCF-4的表达及临床意义 [J]. 中国医药导报, 2022, 19(5): 110-114.
[3]
何旭 胡银山 徐孙秋 杨昆 马春蓉. 血清lncRNA-MALAT-1、miR-143的表达水平与急性髓系白血病临床特征和预后的关系 [J]. 中国医药导报, 2022, 19(35): 101-105.
[4]
周晓宇 罗亭 王润超. 特应性皮炎患儿外周血miR-155表达与Th1/Th17细胞及相关细胞因子的相关性分析 [J]. 中国医药导报, 2022, 19(32): 88-91.
[5]
李媛1 周玉1 魏艺2 胡元会2. 热量限制延缓衰老相关研究的知识图谱分析 [J]. 中国医药导报, 2022, 19(32): 104-107,116.
[6]
周雯 周玥 唐紫云 何思悦 刘小虎 毕子莹 李敏瑞 杨楠. 骨髓间充质干细胞对K562细胞衰老的作用及Raf/MEK/ERK信号通路的影响 [J]. 中国医药导报, 2022, 19(31): 14-17.
[7]
林大卫 吴进 蒋鹏▲. 自噬在脓毒症肌肉萎缩中的研究进展 [J]. 中国医药导报, 2022, 19(31): 57-60,77.
[8]
胡双海 雷铁池. 衰老相关色素性皮肤病机制研究进展 [J]. 中国医药导报, 2022, 19(21): 36-39.
[9]
李海强 李彦 沈徐宁 蒋红钢. LncRNA TUG1通过miR-145/KIAA1199轴对结直肠癌细胞转移和上皮间质转化的影响 [J]. 中国医药导报, 2021, 18(36): 8-13.
[10]
刘星宇1 王杰2 石菲3. miR-189对骨形成的影响及作用机制 [J]. 中国医药导报, 2021, 18(36): 23-27.
[11]
马兰芳1 曹莉莉1 吴章颖2 汪俊涛1. 异位子宫内膜组织差异miRNAs的生物信息学分析 [J]. 中国医药导报, 2021, 18(36): 81-84,90.
[12]
蔡茜1 陈思睿2 朱应群1. miR-150与肺部疾病关系的研究进展 [J]. 中国医药导报, 2021, 18(34): 51-54.
[13]
朱凌霄 张兰 张雪鹏 李昊鑫. miR-145对三阴性乳腺癌细胞增殖、侵袭及转移能力的影响 [J]. 中国医药导报, 2021, 18(32): 22-27.
[14]
孙勇1,2 赵创3 刘志丹1,2. 类风湿关节炎中的外泌体及其作用研究进展 [J]. 中国医药导报, 2021, 18(26): 34-38.
[15]
周艳丽1,2 许剑怡2 王宏娟2 刘蕊1,3 张景照1,3 赵欣1,3 唐旭东1,3. 虫草素的药理作用及应用前景 [J]. 中国医药导报, 2020, 17(8): 39-42.