自噬在脓毒症肌肉萎缩中的研究进展
林大卫 吴进 蒋鹏▲
江苏大学附属医院麻醉科,江苏镇江 212001
Research progress of autophagy in sepsis muscle atrophy
LIN Dawei WU Jin JIANG Peng▲#br#
Department of Anesthesiology, Affiliated Hospital of Jiangsu University, Jiangsu Province, Zhenjiang 212001, China
摘要 脓毒症肌肉萎缩是脓毒症严重并发症之一,严重影响运动系统和呼吸功能。研究表明,脓毒症可从多种途径诱导肌肉萎缩,包括肌蛋白代谢紊乱、线粒体损伤、炎症反应等。自噬是物质代谢的重要途径。正常情况下,自噬通过降解细胞内有害物质,起到保护细胞的作用。但疾病过程中可能产生不同影响。目前自噬对脓毒症肌萎缩产生的利弊仍存在较大争议。自噬可通过代谢途径促进肌肉萎缩,也可以通过线粒体自噬等途径抑制肌肉萎缩。本文旨在探究自噬对脓毒症肌肉萎缩的影响,为临床治疗提供新的思路。
关键词 :
自噬 ,
脓毒症 ,
骨骼肌萎缩 ,
线粒体自噬
Abstract :Sepsis muscle atrophy is one of the serious complications of sepsis, which seriously affects the motor system and respiratory function. Studies have shown that sepsis can induce muscle atrophy through a variety of pathways, including muscle protein metabolism disorders, mitochondrial damage, inflammation, and so on. Autophagy is an important pathway of substance metabolism. Normally, autophagy protects cells by degrading harmful substances in cells. But the disease process can have different effects. At present, the advantages and disadvantages of autophagy on sepsis muscular atrophy are still controversial. Autophagy can promote muscle atrophy through metabolic pathways, and also inhibit muscle atrophy through mitochondrial autophagy and other pathways. This review aims to explore the effect of autophagy on sepsis muscle atrophy and provide new ideas for clinical treatment.
Key words :
Autophagy
Sepsis
Skeletal muscle atrophy
Mitochondrial autophagy
基金资助: 江苏省双创博士人才项目(SCBS201801);
江苏大学附属医院科技项目(jdfyRC2017008)。
通讯作者:
▲通讯作者
[1] Shankar-Hari M,Phillips GS,Levy ML,et al. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock:For the Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA,2016,315(8):775.
[2] Zhang J,Zhao X,Wang A. Early rehabilitation to prevent post-intensive care syndrome in critical illness patients:a Meta-analysis [J]. Zhonghua wei zhong bing ji jiu yi xue,2019,31:1008-1012.
[3] Callahan LA,Supinski GS. Sepsis-induced myopathy [J]. Crit Care Med,2009,37(10 Suppl):S354-S367.
[4] Jonghe B,bastuji-garin S,Durand MC,et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness [J]. Crit Care Med,2007,35:2007- 2015.
[5] Feng Y,He D,Yao Z,et al. The machinery of macroautophagy [J]. Cell Res,2014,24(1):24-41.
[6] Zhu C,Yao R,Li L,et al. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction:A Review [J]. Front Cell Dev Biol,2021,9:664896.
[7] Chen Y,Klionsky DJ. The regulation of autophagy-unanswered questions [J]. J Cell Sci,2011,124(Pt 2):161-170.
[8] Lang CH,Nystrom GJ,Frost RA. Local IGF-Ⅰ Prevents Sepsis-Induced Muscle Atrophy [J]. FASEB J,2009,23(S1): 991.18.
[9] Dutt V,Gupta S,Dabur R,et al. Skeletal muscle atrophy:Potential therapeutic agents and their mechanisms of action [J]. Pharmacol Res,2015,99:86-100.
[10] Cohen S,Nathan JA,Goldberg AL. Muscle wasting in disease:molecular mechanisms and promising therapies [J]. Nat Rev Drug Discov,2015,14(1):58-74.
[11] Fischer D,Gang G,Pritts T,et al. Sepsis-Induced Muscle Proteolysis Is Prevented by a Proteasome Inhibitor in Vivo [J].Biochem Biophys Res Commun,2000,270(1):215-221.
[12] Wasyluk W,Zwolak A. Metabolic Alterations in Sepsis [J]. J Clin Med,2021,10(11):2412.
[13] Doyle A,Zhang G,Fattah EAA,et al. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways [J]. FASEB J,2011,25(1):99-110.
[14] Morel J,Palao JC,Castells J,et al. Regulation of Akt- mTOR,ubiquitin-proteasome and autophagy-lysosome pathways in locomotor and respiratory muscles during experimental sepsis in mice [J]. Sci Rep,2017,7(1):10866.
[15] Laplante M,Sabatini DM. mTOR Signaling in Growth Control and Disease [J]. Cell,2012,149(2):274-293.
[16] Shi M,Hu Z,Zhang X,et al. AMPK activation suppresses mTOR/S6K1 phosphorylation and induces leucine resistance in rats with sepsis [J]. Cell Biol Int,2020,44(5):1133- 1141.
[17] Costelli P,Baccino FM. Mechanisms of skeletal muscle depletion in wasting syndromes:role of ATP-ubiquitin-dependent proteolysis [J]. Curr Opin Clin Nutr Metab Care,2003,6(4):407-412.
[18] Thoma A,Lightfoot AP. NF-κB and Inflammatory Cytokine Signalling:Role in Skeletal Muscle Atrophy [J]. Adv Exp Med Biol,2018,1088:267-279.
[19] Protti A,Carré J,Frost MT,et al. Succinate recovers mitochondrial oxygen consumption in septic rat skeletal muscle [J]. Crit Care Med,2007,35(9):2150-2155.
[20] Neel BA,Lin Y,Pessin JE. Skeletal muscle autophagy:a new metabolic regulator [J]. Trends Endocrinol Metab,2013, 24(12):635-643.
[21] Mofarrahi M,Sigala I,Guo Y,et al. Autophagy and Skeletal Muscles in Sepsis [J]. PLoS One,2012,7(10):e47265.
[22] Kishta OA,Guo Y,Mofarrahi M,et al. Pulmonary Pseudomonas aeruginosa infection induces autophagy and proteasome proteolytic pathways in skeletal muscles:effects of a pressurized whey protein-based diet in mice [J]. Food Nutr Res,2017,61(1):1325309.
[23] Rossignol B,Gueret G,Pennec JP,et al. Effects of chronic sepsis on contractile properties of fast twitch muscle in an experimental model of critical illness neuromyopathy in the rat [J]. Crit Care Med,2008,36(6):1855-1863.
[24] Stana F,Vujovic M,Mayaki D,et al. Differential Regulation of the Autophagy and Proteasome Pathways in Skeletal Muscles in Sepsis [J]. Crit Care Med,2017,45(9):e971- e979.
[25] Zhang Y,Gu L,Zhu N,et al. Calpain 6 inhibits autophagy in inflammatory environments:A preliminary study on myoblasts and a chronic kidney disease rat model [J]. Int J Mol Med,2021,48(4):194.
[26] Ono Y,Maejima Y,Saito M,et al. TAK-242,a specific inhibitor of Toll-like receptor 4 signalling,prevents endotoxemia-induced skeletal muscle wasting in mice [J]. Sci Rep,2020,10(1):694.
[27] Cao C,Gao T,Cheng M,et al. Mild hypothermia ameliorates muscle wasting in septic rats associated with hypothalamic AMPK-induced autophagy and neuropeptides [J]. Biochem Biophys Res Commun,2017,490(3):882-888.
[28] Yoshida T,Galvez S,Tiwari S,et al. Angiotensin Ⅱ Inhibits Satellite Cell Proliferation and Prevents Skeletal Muscle Regeneration [J]. J Biol Chem,2013,288(33):23823- 23832.
[29] Cisternas F,Morales MG,Meneses C,et al. Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin Ⅱ through a Mas receptor-dependent mechanism [J]. Clin Sci(Lond),2015,128(5):307-319.
[30] Rivera JC,Abrigo J,Tacchi F,et al. Angiotensin-(1-7) Prevents Lipopolysaccharide-Induced Autophagy via the Mas Receptor in Skeletal Muscle [J]. Int J Mol Sci,2020,21(24):9344.
[31] Qiu P,Liu Y,Zhang J. Review:the Role and Mechanisms of Macrophage Autophagy in Sepsis [J]. Inflammation,2019, 42(1):6-19.
[32] Wu Y,Yao YM,Lu ZQ. Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure [J]. J Mol Med(Berl),2019,97(4):451-462.
[33] Komatsu M,Ichimura Y. Selective autophagy regulates various cellular functions [J]. Genes to cells,2010,15(9):923- 933.
[34] Leduc-Gaudet JP,Mayaki D,Reynaud O,et al. Parkin Overexpression Attenuates Sepsis-Induced Muscle Wasting [J]. Cells,2020,9(6):1454.
[35] Varela L,Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis [J]. EMBO reports,2012,13(12):1079- 1086.
[36] Cheng M,Gao T,Xi F,et al. Dexmedetomidine ameliorates muscle wasting and attenuates the alteration of hypothalamic neuropeptides and inflammation in endotoxemic rats [J]. PLoS One,2017,12(3):e0174894.
[37] Alirezaei M,Kemball CC,Flynn CT,et al. Short-term fasting induces profound neuronal autophagy [J]. Autophagy,2010,6(6):702-710.
[38] Cao C,Gao T,Cheng Y,et al. Hypothalamic AMPK-induced autophagy ameliorates hypercatabolism in septic rats by regulating POMC expression [J]. Biochem Biophys Res Commun,2018,497(4):1089-1096.
[39] Crowell KT,Soybel DI,Lang CH. Restorative Mechanisms Regulating Protein Balance in Skeletal Muscle During Recovery From Sepsis [J]. Shock,2017,47(4):463-473.
[40] Mizushima N,Yamamoto A,Matsui M,et al. In Vivo Analysis of Autophagy in Response to Nutrient Starvation Using Transgenic Mice Expressing a Fluorescent Autophagosome Marker [J]. Mol Biol Cell,2004,15(3):1101-1111.
[41] Hernandez-García A,Manjarín R,Suryawan A,et al. Amino acids,independent of insulin,attenuate skeletal muscle autophagy in neonatal pigs during endotoxemia [J]. Pediatr Res,2016,80(3):448-451.
[42] 王茂生,林新锋,陈伟焘.针刺减缓脓毒症引起肌肉萎缩的病例报道[J].中医药导报,2019,25(14):92-93.
[43] 吴梦佳,唐成林,赵丹丹,等.电针对失神经大鼠骨骼肌自噬相关基因表达的影响[J].中国康复理论与实践,2018,24(3):260-265.
[1]
吴蓓1 李跃兵2 王维娜2. 右美托咪定通过调节自噬对器官保护的研究进展 [J]. 中国医药导报, 2022, 19(9): 41-45.
[2]
奚希相 马金苗 徐震宇. 还原型谷胱甘肽治疗脓毒症急性肾损伤的效果 [J]. 中国医药导报, 2022, 19(9): 83-86.
[3]
李魏 俞兴群 高志凌 聂卫群 王龙梅. 厚朴排气合剂治疗脓毒症急性胃肠损伤患者的临床研究 [J]. 中国医药导报, 2022, 19(7): 141-144.
[4]
刘光娣1,2 唐荔1,2 刘逸文2,3▲ 李倩2. 不同系统在老年脓毒症休克患者持续有创血压监测中的应用效果比较 [J]. 中国医药导报, 2022, 19(7): 173-176.
[5]
马洪月1 朴钟源2 宋琳3 楚魏1 郑远武3. 中药调节细胞自噬干预阿尔茨海默病作用机制的研究进展 [J]. 中国医药导报, 2022, 19(31): 39-43.
[6]
赵玉玲 黄沂 周艳琼 蒋菲菲 陈海燕. 基于Akt/mTOR信号通路探讨药熨疗法对神经根型颈椎病大鼠神经细胞结构及自噬因子表达的影响 [J]. 中国医药导报, 2022, 19(3): 4-8.
[7]
蒋万威 杨国辉. 脓毒症心肌功能障碍关键基因的筛选及生物信息学分析 [J]. 中国医药导报, 2022, 19(3): 24-28,33.
[8]
谢安妮 余燕婷 王晓燕. 长链非编码RNA在急性肾损伤中的研究进展 [J]. 中国医药导报, 2022, 19(27): 47-49.
[9]
袁长深1 李哲2 官岩兵2 廖书宁2 陈乐伟2 容伟明2 梅其杰1 段戡1. 基于文献计量的骨关节炎与自噬研究态势分析 [J]. 中国医药导报, 2022, 19(24): 5-10,21.
[10]
周平1 徐伟杰1 臧瑞2 李友宽1 武煜明1. 自噬调控在大鼠缺血性脑卒中亚急性期神经修复中的机制研究 [J]. 中国医药导报, 2022, 19(22): 20-24.
[11]
刘晴 朱春雪 刘承雨 王一成 何美娟 何嫣婕 黄汉鹏▲. 苦金片对脂多糖诱导巨噬细胞炎症反应的影响 [J]. 中国医药导报, 2022, 19(2): 21-24.
[12]
谭丽萍1 陈文慧2 石安华3 武俊紫1 朱晓松1 张珊1. 雷帕霉素对非酒精性脂肪性肝病大鼠的影响 [J]. 中国医药导报, 2022, 19(19): 12-15.
[13]
蒋万威 杨国辉. 抑制Rictor对脓毒症小鼠心肌自噬水平的影响 [J]. 中国医药导报, 2022, 19(18): 24-26,32.
[14]
修忠标1 刘洪1 张良志1 刘晶1 林巧璇2 卢莉铭3 郭泽兴3 杨金硕3 . 针刀干预对膝骨关节炎兔原代软骨细胞活性、凋亡及自噬的影响 [J]. 中国医药导报, 2022, 19(18): 123-127.
[15]
秦晓宇1 王春爱2. 沉默信息调节因子1在术后认知功能障碍中保护作用的研究进展 [J]. 中国医药导报, 2022, 19(16): 53-56.