外泌体在重要脏器缺血再灌注损伤中的治疗作用研究进展
曾可君1 杨煜辉1 胡喆2▲
1.广东医科大学第一临床医学院,广东湛江 524000;
2.广东医科大学附属医院麻醉科,广东湛江 524000
Research progress on the therapeutical effect of exosomes in ischemia reperfusion injury in important organs
ZENG Kejun1 YANG Yuhui1 HU Zhe2▲#br#
1.The First Clinical Medical College, Guangdong Medical University, Guangdong Province, Zhanjiang 524000, China;
2.Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong Province, Zhanjiang 524000, China
摘要 缺血再灌注损伤(IRI)是一个从潜在危险因素到明显临床疾病的多步链式过程。血管细胞、血细胞、心肌细胞和干细胞都通过持续且多元的串扰参与病理生理环节。外泌体作为强大的细胞间通讯载体,一直是基础和临床研究的热点。大量证据表明,外泌体在很大程度上参与了IRI的演变,但其在实际治疗应用上仍存在争议,且临床对外泌体在疾病不同阶段的细胞间通讯功能中所扮演的角色仍然知之甚少。本文将就外泌体应用于重要脏器IRI的最新研究作一综述,重点讨论其靶向修饰的临床应用前景。
关键词 :
外泌体 ,
缺血再灌注损伤 ,
器官损伤与保护 ,
靶向治疗
Abstract :Ischemia reperfusion injury (IRI) is a multi-step chain process from potential risk factors to obvious clinical diseases. Vascular cells, blood cells, cardiomyocytes, and stem cells all participate in pathophysiology through continuous and multiple crosstalk. As a powerful carrier of cell-cell communication, exosomes has always been the focus of basic and clinical research. A large amount of evidence shows that exosomes are involved in the evolution of IRI to a large extent, but their actual therapeutical effect is still controversial. The clinical role of exosomes in cell-cell communication at different stages of disease is still poorly understood. This article reviews the latest research on the application of exosomes in IRI of important organs, and focus on the clinical application prospect of their targeted modification.
Key words :
Exosomes
Ischemia-reperfusion
Organ injury and protection
Targeted therapy
基金资助: 国家自然科学基金资助项目(81870222)。
通讯作者:
▲通讯作者
作者简介 : 曾可君(1995-),女,广东医科大学第一临床医学院2019级麻醉学专业在读硕士研究生;研究方向:缺血再灌注与器官保护。
[1] Araujo-Abad S,Saceda M,Romero C. Biomedical application of small extracellular vesicles in cancer treatment [J]. Adv Drug Deliv Rev,2022,182:114117.
[2] Kervadec A,Bellamy V,El Harane N,et al. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure [J]. J Heart Lung Transplant,2016, 35(6):795-807.
[3] Ibrahim A,Marban E. Exosomes:Fundamental Biology and Roles in Cardiovascular Physiology [J]. Annu Rev Physiol,2016,78:67-83.
[4] Johnstone RM,Adam M,Hammond JR,et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles(exosomes) [J]. J Biol Chem,1987,262(19):9412-9420.
[5] Pathan M,Fonseka P,Chitti SV,et al. Vesiclepedia 2019:a compendium of RNA,proteins,lipids and metabolites in extracellular vesicles [J]. Nucleic Acids Res,2019,47(D1):D516-D519.
[6] Van NG,D’angelo G,Raposo G. Shedding light on the cell biology of extracellular vesicles [J]. Nat Rev Mol Cell Biol,2018,19(4):213-228.
[7] Marcus ME,Leonard JN. FedExosomes:Engineering Therapeutic Biological Nanoparticles that Truly Deliver [J]. Pharmaceuticals(Basel),2013,6(5):659-680.
[8] Xi XM,Xia SJ,Lu R. Drug loading techniques for exosome-based drug delivery systems [J]. Pharmazie,2021, 76(2):61-67.
[9] Kamerkar S,Lebleu VS,Sugimoto H,et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer [J]. Nature,2017,546(7659):498-503.
[10] Kanki S,Jaalouk DE,Lee S,et al. Identification of targeting peptides for ischemic myocardium by in vivo phage display [J]. J Mol Cell Cardiol,2011,50(5):841-848.
[11] Hung ME,Leonard JN. Stabilization of exosome-targeting peptides via engineered glycosylation [J]. J Biol Chem,2015,290(13):8166-8172.
[12] Griffiths K,Lee JJ,Frenneaux MP,et al. Nitrite and myocardial ischaemia reperfusion injury. Where are we now?[J]. Pharmacol Ther,2021,223:107819.
[13] Zou Y,Li L,Li Y,et al. Restoring Cardiac Functions after Myocardial Infarction-Ischemia / Reperfusion via an Exosome Anchoring Conductive Hydrogel [J]. ACS Appl Mater Interfaces,2021,13(48):56892-56908.
[14] Zhang N,Song Y,Huang Z,et al. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model [J]. Biomaterials,2020,255:120168.
[15] Ning H,Chen H,Deng J,et al. Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2 / HO-1 axis [J]. Stem Cell Res Ther,2021,12(1):519.
[16] Takov K,He Z,Johnston HE,et al. Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential [J]. Basic Res Cardiol,2020,115(3):26.
[17] Crewe C,Funcke JB,Li S,et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes [J]. Cell Metab,2021,33(9):1853-1868.
[18] Peng Y,Zhao JL,Peng ZY,et al. Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2 [J]. Cell Death Dis,2020,11(5):317.
[19] Su Q,Lv XW,Xu YL,et al. Exosomal LINC00174 derived from vascular endothelial cells attenuates myocardial Ⅰ/ R injury via p53-mediated autophagy and apoptosis [J]. Mol Ther Nucleic Acids,2021,23:1304-1322.
[20] Kim M,Lee Y,Lee M. Hypoxia-specific anti-RAGE exosomes for nose-to-brain delivery of anti-miR-181a oligonucleotide in an ischemic stroke model [J]. Nanoscale,2021,13(33):14166-14178.
[21] Guo L,Huang Z,Huang L,et al. Surface-modified engineered exosomes attenuated cerebral ischemia / reperfusion injury by targeting the delivery of quercetin towards impaired neurons [J]. J Nanobiotechnology,2021,19(1):141.
[22] Tian T,Cao L,He C,et al. Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia [J]. Theranostics,2021,11(13):6507-6521.
[23] Dumbrava DA,Surugiu R,Borger V,et al. Mesenchymal stromal cell-derived small extracellular vesicles promote neurological recovery and brain remodeling after distal middle cerebral artery occlusion in aged rats [J]. Geroscience,2021,2022,44(1):293-310.
[24] Heras-Romero Y,Morales-Guadarrama A,Santana-Martinez R,et al. Improved post-stroke spontaneous recovery by astrocytic extracellular vesicles [J]. Mol Ther,2022, 30(2):798-815.
[25] Castelli V,Antonucci I,D’angelo M,et al. Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusin model [J]. Stem Cells Transl Med,2021,10(2):251-266.
[26] Kim S,Lee S A,Yoon H,et al. Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury [J]. Kidney Int,2021,100(3):570-584.
[27] Li X,Liao J,Su X,et al. Human urine-derived stem cells protect against renal ischemia / reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1 [J]. Theranostics,2020,10(21):9561-9578.
[28] Cao JY,Wang B,Tang TT,et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury [J]. Theranostics,2021,11(11):5248-5266.
[29] Hu S,Li Z,Shen D,et al. Exosome-eluting stents for vascular healing after ischaemic injury [J]. Nat Biomed Eng,2021,5(10):1174-1188.
[30] Kamerkar S,Lebleu VS,Sugimoto H,et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer [J]. Nature,2017,546(7659):498-503.
[31] Wu C,Zhu Q,Yao Y,et al. Exosome miR-23a-3p From Osteoblast Alleviates Spinal Cord Ischemia / Reperfusion Injury by Down-regulating KLF3-activated CCNL2 Transcription [J]. Dev Neurosci,2022,44(3):121-130.
[32] Wei X,Zheng W,Tian P,et al. Administration of glycyrrhetinic acid reinforces therapeutic effects of mesenchymal stem cell-derived exosome against acute liver ischemia-reperfusion injury [J]. J Cell Mol Med,2020, 24(19):11211-11220.
[33] Li JW,Wei L,Han Z,et al. Mesenchymal stromal cells-derived exosomes alleviate ischemia / reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p [J]. Eur J Pharmacol,2019,852:68-76.
[34] Liu J,Chen T,Lei P,et al. Exosomes Released by Bone Marrow Mesenchymal Stem Cells Attenuate Lung Injury Induced by Intestinal Ischemia Reperfusion via the TLR4 / NF-κB Pathway [J]. Int J Med Sci,2019,16(9):1238-1244.
[1]
张明兰 陈美婷 仇姝. 志愿者参与模式对肺癌靶向治疗患者心理状况及生存质量的影响 [J]. 中国医药导报, 2022, 19(25): 180-183,188.
[2]
张小余 徐细明. 记忆CD8+ T细胞相关免疫治疗在肝细胞癌中的研究进展 [J]. 中国医药导报, 2022, 19(19): 45-48,69.
[3]
唐强1 王艳霞2 李宇婷2 尹侠2 马西元2 李宏玉1. 针灸治疗心肌缺血再灌注损伤的研究进展 [J]. 中国医药导报, 2022, 19(14): 36-39.
[4]
黄滨1 王丽萍1 林宝泉2. 食管鳞状细胞癌中SFRP4表达水平及临床意义 [J]. 中国医药导报, 2022, 19(12): 13-16,29.
[5]
赖志昆 冯其茂 王骕 胡晓贞. 黄芪甲苷脂质聚合物纳米粒对缺血再灌注损伤诱导大鼠模型的影响 [J]. 中国医药导报, 2022, 19(11): 25-29.
[6]
乔建新1 刘熙鹏1 刘明1 王静辉1 管超楠2. 加贝酯对脑缺血再灌注损伤大鼠的影响及机制研究 [J]. 中国医药导报, 2021, 18(8): 10-14.
[7]
朱曼丽1 李琳琳2,3. 外泌体源性miRNA在糖尿病中的研究进展 [J]. 中国医药导报, 2021, 18(7): 55-58.
[8]
陈晓佳 郭子傲 郭金华 李林科 张剑凯 杨春 崔晓军. 脂肪间充质干细胞外泌体对大鼠缺血/再灌注损伤心肌的作用及Wnt3a/β-catenin信号通路的影响 [J]. 中国医药导报, 2021, 18(35): 28-31,45.
[9]
史湖波1 徐祎慧2. 非小细胞肺癌新辅助治疗的进展 [J]. 中国医药导报, 2021, 18(3): 43-47.
[10]
孙勇1,2 赵创3 刘志丹1,2. 类风湿关节炎中的外泌体及其作用研究进展 [J]. 中国医药导报, 2021, 18(26): 34-38.
[11]
洪福1 钱立庭2 詹必红1 张洪波1. 脑部放疗同步靶向治疗驱动基因突变阳性NSCLC脑转移的临床价值 [J]. 中国医药导报, 2021, 18(26): 90-94.
[12]
高忠林1 白程菲1 张晓凤2 史亮2 程小红2. 外泌体在中医药研究中的应用进展 [J]. 中国医药导报, 2021, 18(24): 36-39.
[13]
徐新娟1 王士洲1 黄忻涛2▲ 闫青云2 王策1. 新型标志物血清外泌体miRNA在颅脑创伤诊断和监测预后的研究进展 [J]. 中国医药导报, 2021, 18(2): 35-38.
[14]
周敏 李秉枢 刘成 洪莎莎 胡鸣 闵洁 汤剑明 洪莉. 外泌体在骨骼肌损伤修复中的研究进展 [J]. 中国医药导报, 2021, 18(18): 40-43.
[15]
徐家菡 姚永忠▲. 外泌体在乳腺癌中的研究进展 [J]. 中国医药导报, 2021, 18(18): 44-47.