The mechanism of cinobufagin in inducing the death of liver cells by inhibition of histone acetylation
BI Cheng1 XU Ruicheng2 ZOU Shuang2 WANG Congcong2 ZHANG Yan2 XU Zhongwei2
1.Medical School, Hu′nan University of Chinese Medicine, Hu′nan Province, Changsha 410208, China;
2.Medical Center Laboratory, Logistics University of People′s Armed Police Force, Tianjin 300309, China
Abstract:Objective To investigate the mechanism of cinobufagin in regulating the death of liver cells by regulating epigenetic modification. Methods The CCK-8 assay was used to detect the changes of proliferation ability after different concentrations (0, 0.75, 1.5, 2.5, 5, 10 μmol/L) of cinobufagin acting on the HepG2 cells for 24 h; after 5 μmol/L of cinobufagin acting on the HepG2 cells for 12, 24 h, the cell cycle was detected by flow cytometry, and the expression levels of Ca2+/Calmodulin-dependent protein kinase 2β (CaMK2B), methylated-cpg binding protein (MeCP2), phosphorylation-MeCP2 (p-MeCP2), acetylated histone H3.1 (Ac-Histone3.1) and methylated histones (Met-Histone3.1) were detected by Western blot; after 5 μmol/L of cinobufagin acting on the HepG2 cells for 24 h, the interaction between CaMK2B and MeCP2 in HepG2 cells was detected by cell immunofluorescence combined with confocal scanning. Results Cinobufagin could inhibit the growth of HepG2 cells in a dose-independent manner, the difference was statistically significant (P < 0.05), after the drug acting on the cells, the cell cycle comes up G2/M phase arrest, the difference was statistically significant (P < 0.05). 5 μmol/L of cinobufagin could promote the incorporation of CaMK2B and MeCP2 in cell nucleus, the results of Western blot showed that the cinobufagin could increase the expression of CaMK2B and MeCP2 after acting on HepG2 cells (P < 0.05), inhibit the expression of the Ac-Histone3.1, and promote the Met-Histone3.1 (P < 0.05). Conclusion Cinobufagin can induce the death of liver cells by activating the CaMK2B-MeCP2 signal path, inhibiting histone acetylation and promoting histone methylation.
毕成1 徐瑞成2 邹爽2 王聪聪2 张妍2 徐忠伟2. 华蟾毒配基抑制组蛋白乙酰化诱导肝癌细胞死亡的机制[J]. 中国医药导报, 2018, 15(23): 4-8.
BI Cheng1 XU Ruicheng2 ZOU Shuang2 WANG Congcong2 ZHANG Yan2 XU Zhongwei2. The mechanism of cinobufagin in inducing the death of liver cells by inhibition of histone acetylation. 中国医药导报, 2018, 15(23): 4-8.
[1] Davison EK,Sperry J. Alkaloids from the Traditional Chinese Medicine ChanSu:synthesis-enabled structural reassignment of bufopyramide to bufoserotonin C [J]. Org Biomol Chem,2015,13(29):7911-7914.
[2] 王佳宝,徐忠伟,王志美,等.蟾酥活性成分下调极光激酶表达并促进肝癌细胞周期阻滞的机制研究[J].中草药,2017,48(18):3796-3801.
[3] 徐忠伟,王凤梅,王聪聪,等.钠钾ATP酶抑制剂通过调节DNA损伤感应复合体Mre11/Rad50/Nbs1的表达诱导肝癌HepG2细胞周期阻滞[J].中国药理学通报,2016, 32(3):323-327.
[4] 王志美,徐忠伟,王佳宝,等.蟾酥活性成分协调索拉非尼通过下调Akt/NF-κB信号途径抑制肝癌HepG2细胞生长[J].中国药理学通报,2017,33(11):1510-1516.
[5] Kim N,Yim HY,He N,et al. Cardiac glycosides display selective efficacy for STK11 mutant lung cancer [J]. Sci Rep,2016,6:29721.
[6] Karasneh RA,Murray LJ,Cardwell CR. Cardiac glycosides and breast cancer risk:A systematic review and meta-analysis of observational studies [J]. Int J Cancer,2017, 140(5):1035-1041.
[7] Prassas I,Karagiannis GS,Batruch I,et al. Digitoxin-induced cytotoxicity in cancer cells is mediated through distinct kinase and interferon signaling networks [J]. Mol Cancer Ther,2011,10(11):2083-2093.
[8] Xu Z,Wang F,Fan F,et al. Quantitative Proteomics Reveals That the Inhibition of Na(+)/K(+)-ATPase Activity Affects S-Phase Progression Leading to a Chromosome Segregation Disorder by Attenuating the Aurora A Function in Hepatocellular Carcinoma Cells [J]. J Proteome Res,2015,14(11):4594-4602.
[9] Clark T,Maximin S,Meier J,et al. Hepatocellular Carcinoma:Review of Epidemiology,Screening,Imaging Diagnosis,Response Assessment,and Treatment [J]. Curr Probl Diagn Radiol,2015,44(6):479-486.
[10] Xu ZW,Wang FM,Gao MJ,et al. Targeting the Na(+)/K(+)-ATPase alpha1 subunit of hepatoma HepG2 cell line to induce apoptosis and cell cycle arresting [J]. Biol Pharm Bull,2010,33(5):743-751.
[11] Xu ZW,Wang FM,Gao MJ,et al. Cardiotonic steroids attenuate ERK phosphorylation and generate cell cycle arrest to block human hepatoma cell growth [J]. J Steroid Biochem Mol Biol,2011,125(3-5):181-191.
[12] Nakanishi A,Hatano N,Fujiwara Y,et al. AMP-activated protein kinase-mediated feedback phosphorylation controls the Ca2+/calmodulin(CaM)dependence of Ca2+/CaM-dependent protein kinase kinase β [J]. J Biol Chem, 2017,292(48):19804-19813.
[13] York B,Li F,Lin F,et al. Pharmacological inhibition of CaMKK2 with the selective antagonist STO-609 regresses NAFLD [J]. Sci Rep,2017,7(1):11793.
[14] Chen X,Wu Q,You L,et al. Propofol attenuates pancreatic cancer malignant potential via inhibition of NMDA receptor [J]. Eur J Pharmacol,2017,795:150-159.
[15] Marcelo KL,Means AR,York B. The Ca(2+)/Calmodulin/CaMKK2 Axis:Nature′s Metabolic CaMshaft [J]. Trends Endocrinol Metab,2016,27(10):706-718.
[16] Raynal NJ,Lee JT,Wang Y,et al. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer [J]. Cancer Res,2016,76(6):1494-1505.
[17] Mushtaq AU,Lee Y,Hwang E,et al. Biophysical characterization of the basic cluster in the transcription repression domain of human MeCP2 with AT-rich DNA [J]. Biochem Biophys Res Commun,2018,495(1):145-150.
[18] Good KV,Martínez de Paz A,Tyagi M,et al. Trichostatin A decreases the levels of MeCP2 expression and phosphorylation and increases its chromatin binding affinity [J]. Epigenetics,2017,12(11):934-944.
[19] Zhang J,Zhao J,Gao N,et al. MECP2 expression in gastric cancer and its correlation with clinical pathological parameters [J]. Medicine(Baltimore),2017,96(31):e7691.
[20] Ohashi M,Korsakova E,Allen D,et al. Loss of MECP2 Leads to Activation of P53 and Neuronal Senescence [J]. Stem Cell Reports,2018,10(5):1453-1463.